Multicomponent Diffusion in Seven- and Eight-Component Silicate Melts

Article Preview

Abstract:

Natural silicate melts (i.e., magmatic liquids) contain 5 to 10 major oxide components. Hence, diffusion in natural melts is always multi-component diffusion with manifestations such as uphill diffusion. However, complexities in rigorous treatment of multicomponent diffusion made geochemists shy away from treating such diffusion in the past. My group has been working on multicomponent diffusion in seven-and eight-component silicate melts for about 10 years. We started with multicomponent diffusion in a seven-component system (SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O) and obtained the 66 diffusion matrix [1]. Then we focused on a synthetic mid-ocean ridge basalt with eight components (SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O) [2,3] because basalt is the most abundant volcanic melt in the Earth. From experimental data, we obtained 77 diffusion matrix at three temperatures, and found that the eigenvector matrix is roughly invariant with temperature and each of the seven eigenvalues depends on temperature following the Arrhenius relation. This provides a formulation to calculate the diffusion matrix at any temperature within the experimental temperature range. Furthermore, we hypothesize that the diffusion eigenvectors are independent of melt compositions [4,5]. Therefore, we can examine diffusion in silicate melts in eigen-component space, and each eigenvalue is the diffusion coefficient for its corresponding eigen-component. Our preliminary examination of literature data shows that most data are consistent with the hypothesis. We are beginning to develop an online tool to model multicomponent diffusion in natural silicate melt using the eigen-component approach [5]. Here, I report these developments for the broader diffusion community and present future perspectives.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-208

Citation:

Online since:

February 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Guo, Y. Zhang, Multicomponent diffusion in silicate melts: SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O system, Geochim. Cosmochim. Acta 195 (2016) 126-141.

DOI: 10.1016/j.gca.2019.06.009

Google Scholar

[2] C. Guo, Y. Zhang, Multicomponent diffusion in basaltic melts at 1350°C, Geochim. Cosmochim. Acta 228 (2018) 190-204.

DOI: 10.1016/j.gca.2019.06.010

Google Scholar

[3] C. Guo, Y. Zhang, Multicomponent diffusion in a basaltic melt: temperature dependence, Chem. Geol. 549 (2020) article 119700.

DOI: 10.1016/j.chemgeo.2020.119700

Google Scholar

[4] B. Bai, Y. Zhang, Multicomponent diffusion in basaltic melt: a universal eigenvector matrix, AGU Fall Meeting Abstr. 1099638, 2022.

Google Scholar

[5] Y. Zhang, B. Bai, Multicomponent diffusion modeling using Excel, AGU Fall Meeting Abstr. 1299293, 2023.

Google Scholar

[6] Y. Zhang, L. Liu, On diffusion in heterogeneous media, Am. J. Sci. 312 (2012) 1028-1047.

Google Scholar

[7] Y. Zhang, T. Gan, Diffusion in melts and magmas, Rev. Mineral. Geochem. 87(2022)283-337.

Google Scholar

[8] S. Lambart, S. Hamilton, O.I. Lang, Compositional variability of San Carlos olivine, Chem. Geol. 605 (2022) article 120968.

DOI: 10.1016/j.chemgeo.2022.120968

Google Scholar

[9] Y. Yu, Y. Zhang, Y. Chen, Z. Xu, Kinetics of anorthite dissolution in basaltic melt, Geochim. Cosmochim. Acta 179 (2016) 257-274.

DOI: 10.1016/j.gca.2016.02.002

Google Scholar

[10] M.J. Le Bas, R.W. Le Maitre, A. Streckeisen, B. Zanettin, A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol. 27 (1986) 745-750.

DOI: 10.1093/petrology/27.3.745

Google Scholar

[11] J.E. Dixon, E.M. Stolper, J.R. Delaney, Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses, Earth Planet. Sci. Lett. 90 (1988) 87-104.

DOI: 10.1016/0012-821x(88)90114-8

Google Scholar

[12] Y. Zhang, E.M. Stolper, Water diffusion in basaltic melts, Nature 351 (1991) 306-309.

Google Scholar

[13] Y. Chen, Y. Zhang, Olivine dissolution in basaltic melt, Geochim. Cosmochim. Acta 72 (2008) 4756-4777.

DOI: 10.1016/j.gca.2008.07.014

Google Scholar

[14] Y. Chen, Y. Zhang, Clinopyroxene dissolution in basaltic melt, Geochim. Cosmochim. Acta 73 (2009) 5730-5747.

DOI: 10.1016/j.gca.2009.06.016

Google Scholar

[15] Y. Yu, Y. Zhang, Y. Chen, Z. Xu, Kinetics of anorthite dissolution in basaltic melt, Geochim. Cosmochim. Acta 179 (2016) 257-274.

DOI: 10.1016/j.gca.2016.02.002

Google Scholar

[16] Y. Yu, Y. Zhang, Y. Yang, Kinetics of quartz dissolution in natural silicate melts and dependence of SiO2 diffusivity on melt composition, ACS Earth Space Chem. 3 (2019) 599-616.

DOI: 10.1021/acsearthspacechem.8b00193

Google Scholar

[17] Y. Zhang, D. Walker, C.E. Lesher, Diffusive crystal dissolution, Contrib. Mineral. Petrol. 102 (1989) 492-513.

DOI: 10.1007/bf00371090

Google Scholar

[18] A.R. Cooper, The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusion, in: J.B. Wachman, A.D. Franklin (Eds.), Mass Transport in Oxides, Nat. Bur. Stand. Spec. Publ., 1968, pp.79-84.

Google Scholar

[19] Y. Zhang, A modified effective binary diffusion model, J. Geophys. Res. 98 (1993) 11901-11920.

DOI: 10.1029/93jb00422

Google Scholar

[20] A.K. Varshneya, A.R. Cooper, Diffusion in the system K2O-SrO-SiO2, III: interdiffusion coefficients, J. Am. Ceram. Soc. 55 (1972) 312-317.

Google Scholar

[21] H. Sugawara, K. Nagata, K.S. Goto, Interdiffusivities matrix of CaO-Al2O3-SiO2 melt at 1723 K to 1823 K, Metall. Trans. 8B (1977) 605-612.

DOI: 10.1007/bf02658629

Google Scholar

[22] Y. Oishi, M. Nanba, J.A. Pask, Analysis of liquid-state interdiffusion in the system CaO-Al2O3-SiO2 using multiatomic ion models, J. Am. Cer. Soc. 65 (1982) 247-253.

DOI: 10.1111/j.1151-2916.1982.tb10427.x

Google Scholar

[23] Y. Liang, F.M. Richter, E.B. Watson, Diffusion in silicate melts, II: multicomponent diffusion in CaO-Al2O3-SiO2 at 1500°C and 1 GPa, Geochim. Cosmochim. Acta 60 (1996) 5021-5035.

DOI: 10.1016/s0016-7037(96)00352-3

Google Scholar

[24] Y. Liang, A.M. Davis, Energetics of multicomponent diffusion in molten CaO-Al2O3-SiO2, Geochim. Cosmochim. Acta 66 (2002) 635-646.

DOI: 10.1016/s0016-7037(01)00793-1

Google Scholar

[25] V.C. Kress, M.S. Ghiorso, Multicomponent diffusion in MgO-Al2O3-SiO2 and CaO-MgO-Al2O3-SiO2 melts, Geochim. Cosmochim. Acta 57 (1993) 4453-4466.

DOI: 10.1016/0016-7037(93)90495-i

Google Scholar

[26] F. Richter, Y. Liang, W.G. Minarik, Multicomponent diffusion and convection in molten MgO- Al2O3-SiO2, Geochim. Cosmochim. Acta 62 (1998) 1985-1991.

DOI: 10.1016/s0016-7037(98)00123-9

Google Scholar

[27] S. Chakraborty, D.B. Dingwell, D.C. Rubie, Multicomponent diffusion in ternary silicate melts in the system K2O- Al2O3-SiO2: II. mechanisms, systematics, and geological applications, Geochim. Cosmochim. Acta 59 (1995) 265-277.

DOI: 10.1016/0016-7037(95)00284-7

Google Scholar

[28] H. Pablo et al., Multicomponent diffusion in sodium borosilicate glasses, J. Non-Cryst. Sol. 478 (2017) 29-40.

Google Scholar

[29] C. Claireaux, M.H. Chopinet, E. Burov, E. Gouillart, M. Roskosz, M.J. Toplis, Atomic mobility in calcium and sodium aluminosilicate melts at 1200°C, Geochim. Cosmochim. Acta 192 (2016) 235-247.

DOI: 10.1016/j.gca.2016.07.032

Google Scholar

[30] C. Claireaux, M.H. Chopinet, E. Burov, H. Montigaud, M. Roskosz, M.J. Toplis, E. Gouillart, Influence of temperature on multicomponent diffusion in calcium and sodium aluminosilicate melts, J. Non-Cryst. Sol. 505 (2019) 170-180.

DOI: 10.1016/j.jnoncrysol.2018.09.046

Google Scholar

[31] V.C. Kress, M.S. Ghiorso, Multicomponent diffusion in basaltic melts, Geochim. Cosmochim. Acta 59 (1995) 313-324.

DOI: 10.1016/0016-7037(94)00286-u

Google Scholar

[32] J.E. Mungall, C. Romano, D.B. Dingwell, Multicomponent diffusion in the molten system K2O-Na2O- Al2O3-SiO2-H2O, Am. Mineral. 83 (1998) 685-699.

Google Scholar

[33] L. Onsager, Theories and problems of liquid diffusion, Ann. New York Acad Sci. 46 (1945) 241-265.

Google Scholar

[34] H. Fujita, L.J. Gosting, An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients, J. Am. Chem. Soc. 78 (1956), 1099-1106.

DOI: 10.1021/ja01587a006

Google Scholar

[35] M. Krishtal, Some methods of determining diffusion coefficients in multicomponent systems, Fizika Metallov Metallovedenie, 35 (1973), 1234-1240.

Google Scholar

[36] E.L. Cussler, Multicomponent Diffusion, Elsevier, Amsterdam, 1976.

Google Scholar

[37] J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State. London,The Institute of Metals, London, 1987.

Google Scholar

[38] A.C. Lasaga, Kinetic Theory in the Earth Sciences, Princeton University Press, Princeton, NJ, 1998.

Google Scholar

[39] Y. Zhang, Geochemical Kinetics Princeton University Press, Princeton, NJ, 2008.

Google Scholar

[40] Y. Liang, Multicomponent diffusion in molten silicates: theory, experiments, and geological applications, Rev. Mineral. Geochem. 72 (2010) 409-446.

DOI: 10.1515/9781501508394-010

Google Scholar

[41] J.S. Kirkaldy, D. Weichert, and Z.U. Haq, Diffusion in multicomponent metallic systems. VI. some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations, Can. J. Phys. 41 (1963) 2166-2173.

DOI: 10.1139/p63-211

Google Scholar

[42] Y. Zhang, H. Ni, Y. Chen, Diffusion data in silicate melts, Rev. Mineral. Geochem. 72 (2010) 311-408.

Google Scholar

[43] A.F. Trial and F.J. Spera, Measuring the multicomponent diffusion matrix: experimental design and data analysis for silicate melts, Geochim. Cosmochim. Acta 58 (1994) 3769-3783.

DOI: 10.1016/0016-7037(94)90362-x

Google Scholar

[44] Y. Zhang, Diffusive fractionation of K isotopes in molten basalts, Earth Planet. Sci. Lett. 581 (2022) article 117405.

DOI: 10.1016/j.epsl.2022.117405

Google Scholar

[45] A.J. Naldrett. G. Von Gruenewaldt, Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes, Econ. Geol. 84 (1989) 180-187.

DOI: 10.2113/gsecongeo.84.1.180

Google Scholar

[46] C. Li, W.D. Maier, S.A. de Waal, The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex: thermodynamic calculations and new interpretations, Econ. Geol. 96 (2001) 653-662.

DOI: 10.2113/gsecongeo.96.3.653

Google Scholar

[47] R. Latypov, S. Chistyakova, A. Page, R. Hornsey, Field evidence for the in situ crystallization of the Merensky Reef, J. Petrol. 56 (2016) 2341-2372.

DOI: 10.1093/petrology/egv023

Google Scholar

[48] R.G. Cawthorn, The platinum and palladium resources of the Bushveld Complex, South Afr. J. Sci. 95 (1999) 481-489.

Google Scholar

[49] R.G. Cawthorn, The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex: thermodynamic calculations and new interpretations - a discussion, Econ. Geol. 97 (2002) 663-666.

DOI: 10.2113/97.3.663

Google Scholar

[50] C. Li, W.D. Maier, S.A. de Waal, The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex: thermodynamic calculations and new interpretations - a reply, Econ. Geol. 97 (2002) 667.

DOI: 10.2113/gsecongeo.97.3.667

Google Scholar