[1]
C. Guo, Y. Zhang, Multicomponent diffusion in silicate melts: SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O system, Geochim. Cosmochim. Acta 195 (2016) 126-141.
DOI: 10.1016/j.gca.2019.06.009
Google Scholar
[2]
C. Guo, Y. Zhang, Multicomponent diffusion in basaltic melts at 1350°C, Geochim. Cosmochim. Acta 228 (2018) 190-204.
DOI: 10.1016/j.gca.2019.06.010
Google Scholar
[3]
C. Guo, Y. Zhang, Multicomponent diffusion in a basaltic melt: temperature dependence, Chem. Geol. 549 (2020) article 119700.
DOI: 10.1016/j.chemgeo.2020.119700
Google Scholar
[4]
B. Bai, Y. Zhang, Multicomponent diffusion in basaltic melt: a universal eigenvector matrix, AGU Fall Meeting Abstr. 1099638, 2022.
Google Scholar
[5]
Y. Zhang, B. Bai, Multicomponent diffusion modeling using Excel, AGU Fall Meeting Abstr. 1299293, 2023.
Google Scholar
[6]
Y. Zhang, L. Liu, On diffusion in heterogeneous media, Am. J. Sci. 312 (2012) 1028-1047.
Google Scholar
[7]
Y. Zhang, T. Gan, Diffusion in melts and magmas, Rev. Mineral. Geochem. 87(2022)283-337.
Google Scholar
[8]
S. Lambart, S. Hamilton, O.I. Lang, Compositional variability of San Carlos olivine, Chem. Geol. 605 (2022) article 120968.
DOI: 10.1016/j.chemgeo.2022.120968
Google Scholar
[9]
Y. Yu, Y. Zhang, Y. Chen, Z. Xu, Kinetics of anorthite dissolution in basaltic melt, Geochim. Cosmochim. Acta 179 (2016) 257-274.
DOI: 10.1016/j.gca.2016.02.002
Google Scholar
[10]
M.J. Le Bas, R.W. Le Maitre, A. Streckeisen, B. Zanettin, A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol. 27 (1986) 745-750.
DOI: 10.1093/petrology/27.3.745
Google Scholar
[11]
J.E. Dixon, E.M. Stolper, J.R. Delaney, Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses, Earth Planet. Sci. Lett. 90 (1988) 87-104.
DOI: 10.1016/0012-821x(88)90114-8
Google Scholar
[12]
Y. Zhang, E.M. Stolper, Water diffusion in basaltic melts, Nature 351 (1991) 306-309.
Google Scholar
[13]
Y. Chen, Y. Zhang, Olivine dissolution in basaltic melt, Geochim. Cosmochim. Acta 72 (2008) 4756-4777.
DOI: 10.1016/j.gca.2008.07.014
Google Scholar
[14]
Y. Chen, Y. Zhang, Clinopyroxene dissolution in basaltic melt, Geochim. Cosmochim. Acta 73 (2009) 5730-5747.
DOI: 10.1016/j.gca.2009.06.016
Google Scholar
[15]
Y. Yu, Y. Zhang, Y. Chen, Z. Xu, Kinetics of anorthite dissolution in basaltic melt, Geochim. Cosmochim. Acta 179 (2016) 257-274.
DOI: 10.1016/j.gca.2016.02.002
Google Scholar
[16]
Y. Yu, Y. Zhang, Y. Yang, Kinetics of quartz dissolution in natural silicate melts and dependence of SiO2 diffusivity on melt composition, ACS Earth Space Chem. 3 (2019) 599-616.
DOI: 10.1021/acsearthspacechem.8b00193
Google Scholar
[17]
Y. Zhang, D. Walker, C.E. Lesher, Diffusive crystal dissolution, Contrib. Mineral. Petrol. 102 (1989) 492-513.
DOI: 10.1007/bf00371090
Google Scholar
[18]
A.R. Cooper, The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusion, in: J.B. Wachman, A.D. Franklin (Eds.), Mass Transport in Oxides, Nat. Bur. Stand. Spec. Publ., 1968, pp.79-84.
Google Scholar
[19]
Y. Zhang, A modified effective binary diffusion model, J. Geophys. Res. 98 (1993) 11901-11920.
DOI: 10.1029/93jb00422
Google Scholar
[20]
A.K. Varshneya, A.R. Cooper, Diffusion in the system K2O-SrO-SiO2, III: interdiffusion coefficients, J. Am. Ceram. Soc. 55 (1972) 312-317.
Google Scholar
[21]
H. Sugawara, K. Nagata, K.S. Goto, Interdiffusivities matrix of CaO-Al2O3-SiO2 melt at 1723 K to 1823 K, Metall. Trans. 8B (1977) 605-612.
DOI: 10.1007/bf02658629
Google Scholar
[22]
Y. Oishi, M. Nanba, J.A. Pask, Analysis of liquid-state interdiffusion in the system CaO-Al2O3-SiO2 using multiatomic ion models, J. Am. Cer. Soc. 65 (1982) 247-253.
DOI: 10.1111/j.1151-2916.1982.tb10427.x
Google Scholar
[23]
Y. Liang, F.M. Richter, E.B. Watson, Diffusion in silicate melts, II: multicomponent diffusion in CaO-Al2O3-SiO2 at 1500°C and 1 GPa, Geochim. Cosmochim. Acta 60 (1996) 5021-5035.
DOI: 10.1016/s0016-7037(96)00352-3
Google Scholar
[24]
Y. Liang, A.M. Davis, Energetics of multicomponent diffusion in molten CaO-Al2O3-SiO2, Geochim. Cosmochim. Acta 66 (2002) 635-646.
DOI: 10.1016/s0016-7037(01)00793-1
Google Scholar
[25]
V.C. Kress, M.S. Ghiorso, Multicomponent diffusion in MgO-Al2O3-SiO2 and CaO-MgO-Al2O3-SiO2 melts, Geochim. Cosmochim. Acta 57 (1993) 4453-4466.
DOI: 10.1016/0016-7037(93)90495-i
Google Scholar
[26]
F. Richter, Y. Liang, W.G. Minarik, Multicomponent diffusion and convection in molten MgO- Al2O3-SiO2, Geochim. Cosmochim. Acta 62 (1998) 1985-1991.
DOI: 10.1016/s0016-7037(98)00123-9
Google Scholar
[27]
S. Chakraborty, D.B. Dingwell, D.C. Rubie, Multicomponent diffusion in ternary silicate melts in the system K2O- Al2O3-SiO2: II. mechanisms, systematics, and geological applications, Geochim. Cosmochim. Acta 59 (1995) 265-277.
DOI: 10.1016/0016-7037(95)00284-7
Google Scholar
[28]
H. Pablo et al., Multicomponent diffusion in sodium borosilicate glasses, J. Non-Cryst. Sol. 478 (2017) 29-40.
Google Scholar
[29]
C. Claireaux, M.H. Chopinet, E. Burov, E. Gouillart, M. Roskosz, M.J. Toplis, Atomic mobility in calcium and sodium aluminosilicate melts at 1200°C, Geochim. Cosmochim. Acta 192 (2016) 235-247.
DOI: 10.1016/j.gca.2016.07.032
Google Scholar
[30]
C. Claireaux, M.H. Chopinet, E. Burov, H. Montigaud, M. Roskosz, M.J. Toplis, E. Gouillart, Influence of temperature on multicomponent diffusion in calcium and sodium aluminosilicate melts, J. Non-Cryst. Sol. 505 (2019) 170-180.
DOI: 10.1016/j.jnoncrysol.2018.09.046
Google Scholar
[31]
V.C. Kress, M.S. Ghiorso, Multicomponent diffusion in basaltic melts, Geochim. Cosmochim. Acta 59 (1995) 313-324.
DOI: 10.1016/0016-7037(94)00286-u
Google Scholar
[32]
J.E. Mungall, C. Romano, D.B. Dingwell, Multicomponent diffusion in the molten system K2O-Na2O- Al2O3-SiO2-H2O, Am. Mineral. 83 (1998) 685-699.
Google Scholar
[33]
L. Onsager, Theories and problems of liquid diffusion, Ann. New York Acad Sci. 46 (1945) 241-265.
Google Scholar
[34]
H. Fujita, L.J. Gosting, An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients, J. Am. Chem. Soc. 78 (1956), 1099-1106.
DOI: 10.1021/ja01587a006
Google Scholar
[35]
M. Krishtal, Some methods of determining diffusion coefficients in multicomponent systems, Fizika Metallov Metallovedenie, 35 (1973), 1234-1240.
Google Scholar
[36]
E.L. Cussler, Multicomponent Diffusion, Elsevier, Amsterdam, 1976.
Google Scholar
[37]
J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State. London,The Institute of Metals, London, 1987.
Google Scholar
[38]
A.C. Lasaga, Kinetic Theory in the Earth Sciences, Princeton University Press, Princeton, NJ, 1998.
Google Scholar
[39]
Y. Zhang, Geochemical Kinetics Princeton University Press, Princeton, NJ, 2008.
Google Scholar
[40]
Y. Liang, Multicomponent diffusion in molten silicates: theory, experiments, and geological applications, Rev. Mineral. Geochem. 72 (2010) 409-446.
DOI: 10.1515/9781501508394-010
Google Scholar
[41]
J.S. Kirkaldy, D. Weichert, and Z.U. Haq, Diffusion in multicomponent metallic systems. VI. some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations, Can. J. Phys. 41 (1963) 2166-2173.
DOI: 10.1139/p63-211
Google Scholar
[42]
Y. Zhang, H. Ni, Y. Chen, Diffusion data in silicate melts, Rev. Mineral. Geochem. 72 (2010) 311-408.
Google Scholar
[43]
A.F. Trial and F.J. Spera, Measuring the multicomponent diffusion matrix: experimental design and data analysis for silicate melts, Geochim. Cosmochim. Acta 58 (1994) 3769-3783.
DOI: 10.1016/0016-7037(94)90362-x
Google Scholar
[44]
Y. Zhang, Diffusive fractionation of K isotopes in molten basalts, Earth Planet. Sci. Lett. 581 (2022) article 117405.
DOI: 10.1016/j.epsl.2022.117405
Google Scholar
[45]
A.J. Naldrett. G. Von Gruenewaldt, Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes, Econ. Geol. 84 (1989) 180-187.
DOI: 10.2113/gsecongeo.84.1.180
Google Scholar
[46]
C. Li, W.D. Maier, S.A. de Waal, The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex: thermodynamic calculations and new interpretations, Econ. Geol. 96 (2001) 653-662.
DOI: 10.2113/gsecongeo.96.3.653
Google Scholar
[47]
R. Latypov, S. Chistyakova, A. Page, R. Hornsey, Field evidence for the in situ crystallization of the Merensky Reef, J. Petrol. 56 (2016) 2341-2372.
DOI: 10.1093/petrology/egv023
Google Scholar
[48]
R.G. Cawthorn, The platinum and palladium resources of the Bushveld Complex, South Afr. J. Sci. 95 (1999) 481-489.
Google Scholar
[49]
R.G. Cawthorn, The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex: thermodynamic calculations and new interpretations - a discussion, Econ. Geol. 97 (2002) 663-666.
DOI: 10.2113/97.3.663
Google Scholar
[50]
C. Li, W.D. Maier, S.A. de Waal, The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex: thermodynamic calculations and new interpretations - a reply, Econ. Geol. 97 (2002) 667.
DOI: 10.2113/gsecongeo.97.3.667
Google Scholar