Validation of Velocity in Microchannels with a Retention System due to Unevenness Manufactured by 3D Printing (SLA)

Article Preview

Abstract:

Microfluidics is an efficient technology for controlling fluid movement in microchannels at extremely low speeds. The main advantage lies in the significant reduction of samples and reagents, thereby reducing costs and analysis times. Three devices with retention systems are introduced that are manufactured through 3D printing (SLA) incorporating microchannels with variations in levels and dimensions. Fluid velocity is studied, considering factors such as channel width, length, rounding, height, and shape. The analysis of velocity along the channel reveals liquid retention at the devices' maximum point, ensuring more precise results in microdevices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-260

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Bruus, Theoretical microfluidics, Lecture notes, Third edition, vol. 6 (2004).

Google Scholar

[2] B. Heidt et al., The Liberalization of Microfluidics: Form 2 Benchtop 3D Printing as an Affordable Alternative to Established Manufacturing Methods, Phys. Status Solidi A, 217.

DOI: 10.1002/pssa.201900935

Google Scholar

[3] S. B. Berry, J. J. Lee, J. Berthier, E. Berthier, and A. B. Theberge, Droplet incubation and splitting in open microfluidic channels, Analytical Methods, 11 (2019) 4528–4536.

DOI: 10.1039/c9ay00758j

Google Scholar

[4] M. J. Beauchamp, A. V. Nielsen, H. Gong, G. P. Nordin, and A. T. Woolley, 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers, Anal Chem, 91 (2019) 7418–7425.

DOI: 10.1021/acs.analchem.9b01395

Google Scholar

[5] O. A. Al-wdan, O. A. Sharallah, N. A. Abdelwahab, A. O. Mohammed, E. Elmowafy, and M. E. Soliman, Insights into microfabrication and implementation of microfluidics in pharmaceutical drug delivery and analysis, OpenNano, 12 (2023) 100156.

DOI: 10.1016/j.onano.2023.100156

Google Scholar

[6] M. Bucco, La impresión 3D y su aplicación en los servicios médicos (prótesis, fármacos, órganos), 2016.

Google Scholar

[7] A. Hawke, G. Concilia, P. Thurgood, A. Ahnood, S. Baratchi, and K. Khoshmanesh, A 3D printed flow sensor for microfluidic applications, Sens Actuators A Phys, 362 (2023).

DOI: 10.1016/j.sna.2023.114686

Google Scholar

[8] E. A. Galan, H. Zhao, X. Wang, Q. Dai, W. T. S. Huck, and S. Ma, Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine," Matter, Cell Press, 3 (2020) 1893–1922.

DOI: 10.1016/j.matt.2020.08.034

Google Scholar

[9] B. Evans, Practical 3D printers: The Science and Art of 3D Printing, Apress, 2012.

Google Scholar

[10] A. Ortiz, Las impresoras 3D como herramientas científicas, Dialnet, 21(2019).

Google Scholar

[11] J. Prusa, ¿Qué es la impresión 3D?, The Future of Manufacturing. 2023. [Online]. Available: https://afs.prusa3d.com/es/info/que-es-la-impresion-3d

Google Scholar

[12] R. Valverde, IMPRESORAS 3D: Marco teórico, modelos de desarrollo y campos de aplicación Nuevas prácticas culturales y artísticas Tesis realizada por Roxana Valverde Ponce.

Google Scholar

[13] Craftcloud, Tipos de impresoras 3D: las 7 tecnologías de impresión 3D., ALL3DP. 2023. [Online]. Available: https://all3dp.com/es/1/tipos-de-impresoras-3d-tecnologia-de-impresion-3d/

DOI: 10.2307/jj.5076228.4

Google Scholar

[14] Microfluídica: Descripción General, Malvern Panalytical. 2023. [Online]. Available: https://www.malvernpanalytical.com/es/products/technology/microfluidics

Google Scholar

[15] E. A. Galan, H. Zhao, X. Wang, Q. Dai, W. T. S. Huck, and S. Ma, Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine, Matter, 3 (2020) 1893–1922.

DOI: 10.1016/j.matt.2020.08.034

Google Scholar

[16] C. Cárdenas, Microfluídica: el arte de fluir en espacios diminutos, Stamm. 2023. [Online]. Available: https://www.stamm.bio/es/microfluidica-el-arte-de-fluir-en-espacios-diminutos/

DOI: 10.4995/thesis/10251/61767

Google Scholar

[17] Guía de microfluídica, milifluídica y fabricación de laboratorio en un chip, formlabs. 2023. [Online]. Available: https://formlabs.com/latam/blog/microfluidica-milifluidica-fabricacion-laboratorio-chip/

Google Scholar

[18] K. Oh, K. Lee, B. Ahn, and E. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy, Lab Chip, 12 (2012) 515–545.

DOI: 10.1039/c2lc20799k

Google Scholar

[19] Un dispositivo microfluídico puede revolucionar los diagnósticos, SaluDigital. 2023. [Online]. Available: https://www.consalud.es/saludigital/tecnologia-sanitaria/un-dispositivo-microfluidico-puede-revolucionar-los-diagnosticos_54081_102.html

Google Scholar

[20] P. Juárez Jiménez and D. T. De, DISPOSITIVO MICROFLÍDICO MODULAR. LAB-ON-A-CHIP, UPM (2018).

Google Scholar

[21] J. David, J. Díaz, H. Alonso, and C. Bañol, Numero de Reynolds, 2015.

Google Scholar

[22] J. Bernal, Manufactura Aditiva: Innovación y Eficiencia en la Fabricación 3D, Tecnología del Plástico. 2023. [Online]. Available: https://www.plastico.com/es/noticias/manufactura-aditiva-como-proceso-productivo-una-realidad

Google Scholar

[23] F. Rupp et al., A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects, Acta Biomaterialia, 10 (2014) 2894–2906.

DOI: 10.1016/j.actbio.2014.02.040

Google Scholar