[1]
A. Vailati, B. Šeta, M. M. Bou-Ali, and V. Shevtsova, Perspective of research on diffusion: From microgravity to space exploration, Int. J. Heat Mass Transf. 229 (2024) 125705.
DOI: 10.1016/j.ijheatmasstransfer.2024.125705
Google Scholar
[2]
C. E. Lesher and D. Walker, Cumulate maturation and melt migration in a temperature gradient, J. Geophys. Res Solid Earth 93 (B9) (1988) 10295–10311.
DOI: 10.1029/jb093ib09p10295
Google Scholar
[3]
S. Van Vaerenbergh, J. C. Legros, J. L. Daridon, T. Karapantsios, M. Kostoglou, and Z. M. Saghir, Multicomponent transport studies of crude oils and asphaltenes in DSC program, Microgravity Sci. Technol. 18 (3) (2006) 150–154.
DOI: 10.1007/bf02870399
Google Scholar
[4]
S. Xu, A. J. Hutchinson, M. Taheri, B. Corry, and J. F. Torres, Thermodiffusive desalination, Nature Commun. 15 (1) (2024) 2996.
DOI: 10.1038/s41467-024-47313-5
Google Scholar
[5]
W. Köhler, A. Mialdun, M. M. Bou-Ali, and V. Shevtsova, The Measurement of Soret and Thermodiffusion Coefficients in Binary and Ternary Liquid Mixtures, Int. J. Thermophys. 44 (9) (2023) 140.
DOI: 10.1007/s10765-023-03242-x
Google Scholar
[6]
H. Matsuura and Y. Nagasaka, Theory and Experiment of the Soret Forced Rayleigh Scattering Technique for Mass Diffusion Coefficient Measurement of Binary Liquid Mixtures, Int. J. Thermophys. 45 (8) (2024) 112.
DOI: 10.1007/s10765-024-03401-8
Google Scholar
[7]
M. R. Mohebbifar and M. Almasi, Study of thermal behavior of alcohol-CCl4 binary mixtures using laser thermal lens spectroscopy, J. Therm. Anal. Calorim. 147 (16) (2022) 8679–8687.
DOI: 10.1007/s10973-021-11172-9
Google Scholar
[8]
A. T. Ndjaka, L. García-Fernández, D. E. B. Bouyou, A. Lassin, M. Azaroual, F. Croccolo, and H. Bataller, Mass diffusion and Soret coefficient measurements of triethylene glycol/water binary mixtures by dynamic shadowgraphy, Eur. Phys. J. E 45 (3) (2022) 20.
DOI: 10.1140/epje/s10189-022-00171-9
Google Scholar
[9]
A. Mialdun and V. M. Shevtsova, Development of optical digital interferometry technique for measurement of thermodiffusion coefficients, Int. J. Heat Mass Transf. 51 (11) (2008) 3164–3178.
DOI: 10.1016/j.ijheatmasstransfer.2007.08.020
Google Scholar
[10]
A. Mialdun and V. Shevtsova, Measurement of the Soret and diffusion coefficients for benchmark binary mixtures by means of digital interferometry, J. Chem. Phys. 134 (4) (2011) 044524.
DOI: 10.1063/1.3546036
Google Scholar
[11]
C.I.A.V. Santos, M.C.F. Barros, A.C.F. Ribeiro, M.M. Bou-Ali, A. Mialdun, and V. Shevtsova, Transport properties of n-ethylene glycol aqueous solutions with focus on triethylene glycol–water, J. Chem. Phys. 156 (21) (2022) 214501.
DOI: 10.1063/5.0091902
Google Scholar
[12]
Y. Mori, Y. Hashimoto, S. Suzuki, and Y. Inatomi, Investigation of the Application of a Two-Wavelength Mach-Zehnder Interferometer to Measure Soret Coefficients, Trans. JSASS Aerospace Tech. Japan 12 (ists29) (2014) Ph_37-Ph_40.
DOI: 10.2322/tastj.12.ph_37
Google Scholar
[13]
T. Osada, Y. Hashimoto, M. Tomaru, S. Suzuki, Y. Inatomi, Y. Ito, and T. Shimaoka, Improvement of Interference Fringe Analysis for Soret Coefficient Measurement in Soret-Facet Mission, Int. J. Microgravity Sci. Appl. 33 (4) (2016) 330407.
DOI: 10.1007/s12217-018-9664-z
Google Scholar
[14]
M. Tomaru, T. Osada, I. Orikasa, and S. Suzuki, Analysis Method Using Two-Wavelength Mach-Zehnder Interferometer for the Measurement of Soret Coefficients in Soret-Facet Mission on ISS, Microgravity Sci. Technol. 31 (1) (2019) 49–59.
DOI: 10.1007/s12217-018-9664-z
Google Scholar
[15]
I. Orikasa, T. Osada, M. Tomaru, S. Suzuki, and Y. Inatomi, Improvement in Phase Analysis using Spatio-Temporal Images for Soret Coefficient Measurements, Int. J. Microgravity Sci. Appl. 36 (3) (2019) 360306.
DOI: 10.1007/s12217-018-9664-z
Google Scholar
[16]
Y. Inatomi, I. Yoshizaki, K. Sakata, T. Shimaoka, T. Sone, T. Tomobe, S. Adachi, S. Yoda, and Y. Yoshimura, Investigation on Mechanism of Faceted Cellular Array Growth in International Space Station, Defect and Diffusion Forum 323–325 (2012) 533–537.
DOI: 10.4028/www.scientific.net/ddf.323-325.533
Google Scholar
[17]
Y. Inatomi, Brief Report of Investigation on Mechanism of Faceted Cellular Array Growth (FACET), Int. J. Microgravity Sci. Appl. 31 (3) (2014) 106 (in Japanese).
Google Scholar
[18]
T. Odajima, I. Orikasa, K. Tominaga, Y. Hashimoto, T. Osada, M. Tomaru, Y. Inatomi, and S. Suzuki, Automatic Analysis Method of Interference Fringes in Soret Coefficient Measurement on the ISS, JASMAC-33 Abstract, OR1-1 (2021)
DOI: 10.1002/aic.17497
Google Scholar
[19]
A. Königer, B. Meier, and W. Köhler, Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol–water mixtures using a beam deflection technique, Philos. Mag. 89 (10) (2009) 907–923.
DOI: 10.1080/14786430902814029
Google Scholar
[20]
K. J. Zhang, M. E. Briggs, R. W. Gammon, and J. V. Sengers, Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures, J. Chem. Phys. 104 (17) (1996) 6881–6892.
DOI: 10.1063/1.471355
Google Scholar