Improvement of Interference Fringes Analysis to Obtain Accurate Soret Coefficients

Article Preview

Abstract:

In this study, we proposed a moved-view analysis, a method for obtaining the Soret coefficient ST by analyzing the interference fringe change during field-of-view movement in the steady state. This analysis was designed to solve the problem that the sign of the concentration gradient could also be reversed if the plot of the concentration distribution was only slightly shifted owing to the narrow field of view. The data obtained from the experiment conducted to measure ST at the International Space Station were analyzed using moved-view analysis. For the moved-view analysis, the linearity of the concentration distribution induced by the Soret effect is larger than that for the method without field-of-view movement, and a more reliable ST can be obtained. The analysis error that sometimes occurred when the laser wavelength switched led to the underestimation of the phase change Δϕ, resulting in generating the data with low linearity. This unreliable data should be removed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

291-304

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Vailati, B. Šeta, M. M. Bou-Ali, and V. Shevtsova, Perspective of research on diffusion: From microgravity to space exploration, Int. J. Heat Mass Transf. 229 (2024) 125705.

DOI: 10.1016/j.ijheatmasstransfer.2024.125705

Google Scholar

[2] C. E. Lesher and D. Walker, Cumulate maturation and melt migration in a temperature gradient, J. Geophys. Res Solid Earth 93 (B9) (1988) 10295–10311.

DOI: 10.1029/jb093ib09p10295

Google Scholar

[3] S. Van Vaerenbergh, J. C. Legros, J. L. Daridon, T. Karapantsios, M. Kostoglou, and Z. M. Saghir, Multicomponent transport studies of crude oils and asphaltenes in DSC program, Microgravity Sci. Technol. 18 (3) (2006) 150–154.

DOI: 10.1007/bf02870399

Google Scholar

[4] S. Xu, A. J. Hutchinson, M. Taheri, B. Corry, and J. F. Torres, Thermodiffusive desalination, Nature Commun. 15 (1) (2024) 2996.

DOI: 10.1038/s41467-024-47313-5

Google Scholar

[5] W. Köhler, A. Mialdun, M. M. Bou-Ali, and V. Shevtsova, The Measurement of Soret and Thermodiffusion Coefficients in Binary and Ternary Liquid Mixtures, Int. J. Thermophys. 44 (9) (2023) 140.

DOI: 10.1007/s10765-023-03242-x

Google Scholar

[6] H. Matsuura and Y. Nagasaka, Theory and Experiment of the Soret Forced Rayleigh Scattering Technique for Mass Diffusion Coefficient Measurement of Binary Liquid Mixtures, Int. J. Thermophys. 45 (8) (2024) 112.

DOI: 10.1007/s10765-024-03401-8

Google Scholar

[7] M. R. Mohebbifar and M. Almasi, Study of thermal behavior of alcohol-CCl4 binary mixtures using laser thermal lens spectroscopy, J. Therm. Anal. Calorim. 147 (16) (2022) 8679–8687.

DOI: 10.1007/s10973-021-11172-9

Google Scholar

[8] A. T. Ndjaka, L. García-Fernández, D. E. B. Bouyou, A. Lassin, M. Azaroual, F. Croccolo, and H. Bataller, Mass diffusion and Soret coefficient measurements of triethylene glycol/water binary mixtures by dynamic shadowgraphy, Eur. Phys. J. E 45 (3) (2022) 20.

DOI: 10.1140/epje/s10189-022-00171-9

Google Scholar

[9] A. Mialdun and V. M. Shevtsova, Development of optical digital interferometry technique for measurement of thermodiffusion coefficients, Int. J. Heat Mass Transf. 51 (11) (2008) 3164–3178.

DOI: 10.1016/j.ijheatmasstransfer.2007.08.020

Google Scholar

[10] A. Mialdun and V. Shevtsova, Measurement of the Soret and diffusion coefficients for benchmark binary mixtures by means of digital interferometry, J. Chem. Phys. 134 (4) (2011) 044524.

DOI: 10.1063/1.3546036

Google Scholar

[11] C.I.A.V. Santos, M.C.F. Barros, A.C.F. Ribeiro, M.M. Bou-Ali, A. Mialdun, and V. Shevtsova, Transport properties of n-ethylene glycol aqueous solutions with focus on triethylene glycol–water, J. Chem. Phys. 156 (21) (2022) 214501.

DOI: 10.1063/5.0091902

Google Scholar

[12] Y. Mori, Y. Hashimoto, S. Suzuki, and Y. Inatomi, Investigation of the Application of a Two-Wavelength Mach-Zehnder Interferometer to Measure Soret Coefficients, Trans. JSASS Aerospace Tech. Japan 12 (ists29) (2014) Ph_37-Ph_40.

DOI: 10.2322/tastj.12.ph_37

Google Scholar

[13] T. Osada, Y. Hashimoto, M. Tomaru, S. Suzuki, Y. Inatomi, Y. Ito, and T. Shimaoka, Improvement of Interference Fringe Analysis for Soret Coefficient Measurement in Soret-Facet Mission, Int. J. Microgravity Sci. Appl. 33 (4) (2016) 330407.

DOI: 10.1007/s12217-018-9664-z

Google Scholar

[14] M. Tomaru, T. Osada, I. Orikasa, and S. Suzuki, Analysis Method Using Two-Wavelength Mach-Zehnder Interferometer for the Measurement of Soret Coefficients in Soret-Facet Mission on ISS, Microgravity Sci. Technol. 31 (1) (2019) 49–59.

DOI: 10.1007/s12217-018-9664-z

Google Scholar

[15] I. Orikasa, T. Osada, M. Tomaru, S. Suzuki, and Y. Inatomi, Improvement in Phase Analysis using Spatio-Temporal Images for Soret Coefficient Measurements, Int. J. Microgravity Sci. Appl. 36 (3) (2019) 360306.

DOI: 10.1007/s12217-018-9664-z

Google Scholar

[16] Y. Inatomi, I. Yoshizaki, K. Sakata, T. Shimaoka, T. Sone, T. Tomobe, S. Adachi, S. Yoda, and Y. Yoshimura, Investigation on Mechanism of Faceted Cellular Array Growth in International Space Station, Defect and Diffusion Forum 323–325 (2012) 533–537.

DOI: 10.4028/www.scientific.net/ddf.323-325.533

Google Scholar

[17] Y. Inatomi, Brief Report of Investigation on Mechanism of Faceted Cellular Array Growth (FACET), Int. J. Microgravity Sci. Appl. 31 (3) (2014) 106 (in Japanese).

Google Scholar

[18] T. Odajima, I. Orikasa, K. Tominaga, Y. Hashimoto, T. Osada, M. Tomaru, Y. Inatomi, and S. Suzuki, Automatic Analysis Method of Interference Fringes in Soret Coefficient Measurement on the ISS, JASMAC-33 Abstract, OR1-1 (2021)

DOI: 10.1002/aic.17497

Google Scholar

[19] A. Königer, B. Meier, and W. Köhler, Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol–water mixtures using a beam deflection technique, Philos. Mag. 89 (10) (2009) 907–923.

DOI: 10.1080/14786430902814029

Google Scholar

[20] K. J. Zhang, M. E. Briggs, R. W. Gammon, and J. V. Sengers, Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures, J. Chem. Phys. 104 (17) (1996) 6881–6892.

DOI: 10.1063/1.471355

Google Scholar