Numerical Evaluation of the Temperature Field inside Specialty Coffee Beans during Microwave Drying

Article Preview

Abstract:

The drying process that is responsible for ensuring the coffee quality, reduces the moisture of the coffee bean thus avoiding unwanted microorganisms. Traditional drying methods take between 16 and 45 hours to dry coffee beans, which results in high operational costs. Therefore, the application of the microwave drying technique is a possible alternative, as it can reduce drying periods by four times. In this study, the main goal was to evaluate the heating kinetics and distribution of a single coffee bean due to microwaves to verify its heterogeneity. Initially, a single coffee bean was designed and inserted into a monomode microwave cavity. The geometry of the coffee bean was simplified as a semi-ellipsoid with its diameters measured experimentally and with four different curvatures at the edges. As a result of the numerical simulations, the temperature distribution on the coffee bean over time was obtained as well as the average temperature and temperature at its center. The heating kinetics plot described a linear curve for every geometry, having a higher inclination in the sharp edge and decreasing as the curvature increases. Also, when comparing the average and center temperatures, the temperature in the center is 107.58 °C and the average temperature of the coffee bean is 96.09 °C, which corroborates the fact that the microwave heating occurs from inside out. In conclusion, the microwave heating in coffee beans is heterogeneous, starting in its center, favoring the mass transfer phenomenon during drying and can be influenced by the sharpness of the coffee beans edges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-290

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. N. Melliyanti, F. A. Afandi, P. E. Giriwono, D. Herawati, A meta-analysis: the effects of types, roasting degrees and origins on antioxidant properties of coffee, Int. J. of Food Sci. & Tech. 58:6 (2023) 2857-2865.

DOI: 10.1111/ijfs.16431

Google Scholar

[2] J. L. G. Corrêa, K. S. D.Mendonça, L. R. Rodrigues, M. L. V.Resende, G. E. Alves, Spray drying of coffee leaf extract, Coffee Sci. 11 (2016) 359-357.

Google Scholar

[3] J. L. G. Corrêa, J. C. P. Santos, B. E. Fonseca, A. G. D. S. Carvalho, Drying of spent coffee grounds in a cyclonic dryer, Coffee Sci. 9 (2014) 68-76.

Google Scholar

[4] F. O. da Costa, T.F. Alvarenga, T. V. C. de Mesquita, I. J. Petri, Hybrid drying of pulped arabica coffee cherry beans (Coffea arabica L. cv. Catuai) using a hexagonal microwave dryer designed by numerical simulations, J. Food Process Eng. 44:5 (2021) 1 - 9.

DOI: 10.1111/jfpe.13666

Google Scholar

[5] H. A. Rocha, J. L. G. Corrêa, F.M. Borém, Vacuum drying of peeled coffee cherry beans: Drying kinetics and physiological effects. Coffee Sci. 16 (2022) 1 – 7.

DOI: 10.25186/.v16i.1921

Google Scholar

[6] R.V. Moreira, J. L. G. Corrêa, Colouring of Coffee Grains Related to Different Relative Humidity of the Drying Air After Partial Drying, Eng na Agric. 28 (2020) 343 – 349.

DOI: 10.13083/reveng.v29i1.8209

Google Scholar

[7] R.V. Moreira, J. L. G. Corrêa, E. T. Andrade, R. A. Rocha, Drying Kinetics Of Peeled Coffee Submitted To Different Temperatures And Relative Humidity Of The Air Of Drying After Partial Drying, Eng. na Agric. 28 (2020) 460 - 476.

DOI: 10.13083/reveng.v29i1.8217

Google Scholar

[8] E.P. Isquierdo, F.M. Borém, E. T. Andrade; J. L. G. Corrêa, P. D. Oliveira, G. Alves, Drying kinetics and quality of natural coffee for different temperatures and relative humidities, ASABE Transactions 56 (2013) 1003 - 1010.

Google Scholar

[9] M. L. Cunha, M. W. Canto, A. Marsaioli, Secagem de café cereja descascado por ar quente e microondas, Food Sci. Technol. 23:3 (2003) 381–385.

DOI: 10.1590/s0101-20612003000300015

Google Scholar

[10] I. Petri Junior, Martins A. L., Duarte C. R., Ataíde C. H. Development and performance of a continuous industrial microwave dryer for remediation of drill cuttings. J. of Petroleum Sci. and Eng., 176 (2019), 362–368.

DOI: 10.1016/j.petrol.2019.01.075

Google Scholar

[11] K. Cheng, W. Dong, Y. Long, J. Zhao, R. Hu, Y. Zhang, K. Zhu, Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans, Food Sci Nutr. 7:3 (2019) 1084–1095.

DOI: 10.1002/fsn3.948

Google Scholar

[12] D. Wenjiang, H. Rongsuo, C. Zhong, Z. Jianping, T. Lehe. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans, Food Chem. 234 (2017) 121-130.

DOI: 10.1016/j.foodchem.2017.04.156

Google Scholar

[13] F. Karimi, Properties of the drying of agricultural products in microwave vacuum: A review article, J. Agric. Technol. 6:2 (2010).

Google Scholar

[14] P. Ghosh, N. Venkatachalapathy, Changes in physico-chemical properties of coffee due to hot air assisted microwave drying, Int. J. Process and Post Harvest Technol. 6 (2015) 80-90.

DOI: 10.15740/has/ijppht/6.1/69-79

Google Scholar

[15] M. Saeed Alkaltham, M. Musa Özcan, N. Uslu, A. Salamatullah, K. Hayat, Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans, J. Food Process. Preserv. 44 (2020).

DOI: 10.1111/jfpp.14874

Google Scholar

[16] P. G. Silveira, J. L. G. Corrêa, C. R. de P.Silva, L. L. Macedo, W. S. Gonçalves,; I. Petri Júnior, Innovative strategies in yacon drying: Ethanol pretreatment and intermittent microwave drying, J. of Food Sci. 1 (2024) 1 – 12.

DOI: 10.1111/1750-3841.17254

Google Scholar

[17] F.J. Lopes, J. L. G.Corrêa, I.Petri Júnior, R. E. Mello Júnior, A. U. de Souza, E. Corona-Jimenez,; M. C. de A Pereira,Microwave-vacuum drying of pulsed vacuum osmotic dehydration-pretreated Yacon as an alternative for preserving fructo-oligosaccharides, Ciênc. e Agrotec. (Online) 48 (2024) 015523.

DOI: 10.1590/1413-7054202448015523

Google Scholar

[18] K. S. De Mendonça, J. L. G.Corrêa, J. R. de J Junqueira, E. E. N. Carvalho, P. G. Silveira; Uemura, J. H. S. Peruvian carrot chips obtained by microwave and microwave-vacuum drying, LWT-Food Sci. And Tech. 187 (2023) 115346.

DOI: 10.1016/j.lwt.2023.115346

Google Scholar

[19] K. De S. Mendonça, J.L.G. Corrêa,J. R. De J. Junqueira, A. U. De Souza, Two-Stage Power Level To Improve Microwave Vacuum Drying Of Restructured Peruvian Carrot Chips, Ciênc. e Agrotec. (Online) 47 (2023) P.E010523.

DOI: 10.1590/1413-7054202347010523

Google Scholar

[20] A. U de Souza, J.L.G. Corrêa, D.H. Tanikawa, F.R. Abrahão, J. R. de J., E. J. Corona. Hybrid Microwave-Hot Air Drying Of The Osmotically Treated Carrots, Lwt-Food Sci, And Tech. 156 (2022) 113046.

DOI: 10.1016/j.lwt.2021.113046

Google Scholar

[21] J.R.J. Junqueira, J. L. G. Corrêa, I. Petri Júnior, I.P Gatti, Microwave Drying Of Sweet Potato: Drying Kinetics And Energetic Analysis, Aust J Crop Sci., 2022 1185 - 1192.

DOI: 10.21475/ajcs.22.16.10.p3673

Google Scholar

[22] P.N. Curi, D.L. Salgado, K.S. Mendonça, R. Pio, J.L.G. Corrêa, R. Souza, Influence Of Microwave Processing On The Bioactive Compounds, Antioxidant Activity And Sensory Acceptance Of Blackberry Jelly, Food Sci. And Tech. 39 (2019) 386 - 391.

DOI: 10.1590/fst.18618

Google Scholar

[23] J.R. de J. Junqueira, J. L .G. Corrêa, D.B. Ernesto, Microwave, Convective, And Intermittent Microwave-Convective Drying Of Pulsed Vacuum Osmodehydrated Pumpkin Slices, J. Of Food Proces. And Preserv. 41 (2017) 13250.

DOI: 10.1111/jfpp.13250

Google Scholar

[24] J.R.J. Junqueira, K.S. Mendonça, J.L.G. Corrêa,. Microwave Drying Of Sweet Potato (Ipomoea Batatas (L.)) Slices: Influence Of The Osmotic Pretreatment, Defect & Diffus.367 2016) 167 - 174.

DOI: 10.4028/www.scientific.net/ddf.367.167

Google Scholar

[25] J. Muñoz-Neira, M. Roa-Ardila, C. Correa-Celi, Comparative analysis of drying coffee beans using microwave and conventional oven, Rev. Facu. Ingeniería Uni. Anti. 95 (2020) 100-108.

DOI: 10.17533/udea.redin.20191151

Google Scholar

[26] E. Silva, R. Gomez, J. Gomes, W. Silva, K. Porto, F. Rolim, J. Carmo, R. Andrade, I. Santos, R. Sousa, et al. Heat and Mass Transfer on the Microwave Drying of Rough Rice Grains: An Experimental Analysis, Agric. 11:1 (2021).

DOI: 10.3390/agriculture11010008

Google Scholar

[27] N. An, D. Li, L. Wang, Y.Wang, Factors affecting energy efficiency of microwave drying of foods: an updated understanding, Crit Rev Food Sci Nutr. 64:9 (2022) 2618–2633.

DOI: 10.1080/10408398.2022.2124947

Google Scholar

[28] A. Menon, V. Stojceska, S. Tassou, A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies, Trends Food Sci. Technol. 100 (2020) 67-76.

DOI: 10.1016/j.tifs.2020.03.014

Google Scholar

[29] COMSOL, COMSOL Multiphysics Reference Manual, 5:5 (2019).

Google Scholar

[30] F. M. Borém, R. C. de M. S. Ribeiro, P. C. Corrêa, R. G. F. A. Pereira, Propriedades térmicas de cinco Propriedades térmicas de cinco variedades de café cereja descascado, Rev. Bras. Eng. Agric. Ambient. 6:3 (2002) 475-480.

DOI: 10.1590/s1415-43662002000300016

Google Scholar

[31] K. B. do Carmo, J. C. B. do Carmo, M. R. Krause, A. P. Moreli, P. A. V. Lo Monaco, Quality of arabic coffee under different processing systems, drying methods and altitudes, Biosci. J. 36:4 (2020) 1116–1125.

DOI: 10.14393/bj-v36n4a2020-47890

Google Scholar

[32] Z. Zhang, T. Su, S. Zhang, Shape Effect on the Temperature Field during Microwave Heating Process, J. Food Qual. (2018).

Google Scholar

[33] S. Chandrasekaran, S. Ramanathan, T. Basak, Microwave food processing—A review, Food Research Int. 52:1 (2013) 243-261.

DOI: 10.1016/j.foodres.2013.02.033

Google Scholar

[34] B. Alonso-Torres, J. Perez, F. Sierra, S. Schenker, C. Yeretzian, Modeling and Validation of Heat and Mass Transfer in Individual Coffee Beans during the Coffee Roasting Process Using Computational Fluid Dynamics (CFD), Chimia. 67 (2013) 291-294.

DOI: 10.2533/chimia.2013.291

Google Scholar

[35] A. Fabbri, C. Cevoli, L. Alessandrini, S. Romani. Numerical modeling of heat and mass transfer during coffee roasting process, J. Food Eng. 105:2 (2011), 264-269.

DOI: 10.1016/j.jfoodeng.2011.02.030

Google Scholar

[36] J. Raj, S. Birla, K. Pitchai, J. Subbiah, D. Jones, Modeling of Microwave Heating of a Rotating Object in Domestic Oven, COMSOL Conference (2011), Boston.

Google Scholar