[1]
P. R. Mei. Effects of niobium microaddition on carbon steels. Defect and Diffusion Forum, 420 (2022) 101-117
DOI: 10.4028/p-5kc1x5
Google Scholar
[2]
ASM. Selected values of the thermodynamic properties of binary alloys, ASM, USA, 1973, p.846.
Google Scholar
[3]
Metals Handbook, v. 8, ASM, USA, 1973.
Google Scholar
[4]
H. Nordberg, B. Aronsson. Solubility of niobium carbide in austenite, JISI. 206 (1968) 1263-1266.
Google Scholar
[5]
F. D. Kazinczi et al. Some properties of niobium treated mild steel. Jerkontorets Annaler, Stockholm, 147 (1963) 408. In: Columbium as a micro-alloying element in steels and its effect on welding technology. T. M. Nore'n. Washington, DC, U. S. Department of Commerce, Office of Technical Services. August 30, 1963, 53 p. https://apps.dtic.mil/sti/pdfs/AD0424983.pdf
Google Scholar
[6]
T. Mori et al. Thermodynamic properties of niobium carbides and nitrides in steels. Tetsu to Hagane. 54 (1968) 763-776. https://www.jstage.jst.go.jp/article/tetsutohagane1955/ 54/7/54_7_763/_pdf/-char/en
DOI: 10.2355/tetsutohagane1955.54.7_763
Google Scholar
[7]
K. Narita. Physical chemistry of the groups IVA (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel. Trans. ISI Japan. 15 (1975) 145 -152. https://www.jstage.jst.go.jp/article/ isijinternational1966/15/3/15_145/_pdf/-char/en
DOI: 10.2355/isijinternational1966.15.145
Google Scholar
[8]
V. K. Lakshmanan, J. S. Kirkaldy. Solubility product for niobium carbide in austenite. Metallurgical Transactions A. 15 (1984) 541-544 https://link.springer.com/content/pdf/
DOI: 10.1007/bf02644978
Google Scholar
[9]
E. J. Palmiere, C. I. Garcia, A. J. De Ardo. Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium. Metall. Mater. Trans. A. 25 (1994) 277–286
DOI: 10.1007/BF02647973
Google Scholar
[10]
W. Stuckens. Pure cementite and W, V, Nb, and Ta substituted cementites. Ann. Chim. 8 (1963) 229-249.
Google Scholar
[11]
W. Stuckens and A. Michel. Variations in the stoichiometry of pure cementite. Comp. Rend. 253 (1961) 2358-2360.
Google Scholar
[12]
Handbook of Chemistry and Physics. 58ª ed., CRC Press, USA, 1977, p. F-215.
Google Scholar
[13]
P.C. Liu et al. The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels, Materials Letters. 279 (2020) 128520
DOI: 10.1016/j.matlet.2020.128520
Google Scholar
[14]
R. C. Hudd et al. A method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride. JISI. 209 (1971) 121-125.
Google Scholar
[15]
S. Koyama et al. Effects of Mn, Si, Cr, and Ni on the solution and precipitation of niobium carbide in iron austenite. J. Japan Inst. Metals. 35 (1971) 1089-1094.
DOI: 10.2320/jinstmet1952.35.11_1089
Google Scholar
[16]
D. C. Houghton et al. Characterization of carbonitrides in Ti bearing HSLA steel. Int. Symp. Niobium 81, San Francisco, USA, Nov. 8-11, 1981.
Google Scholar
[17]
S. R. Keown and W.G. Wilson. In: Thermomechanical processing of microalloyed austenite. TMS-AIME, Warrendale, PA, 1981, p.343–56.
Google Scholar
[18]
K. J. Irvine et al. Grain refined C-Mn steels. JISI. 205 (1967) 161-182.
Google Scholar
[19]
P. Mandry and W. Dornelas. Solubilité des précipités de niobium dans l'austénite dans le cas d'aciers de construction à bas carbone et contenant de très faibles quantités de niobium. Compt. Rendus, Acad. Sci. Paris, Série C. 263 (1966) 1118-1121.
DOI: 10.1051/metal/196966070563
Google Scholar
[20]
T. Mori et al. Thermodynamic behaviors of niobium carbide-nitride and sulfide in steel. Tetsu to Hagane. 51 (1965) 2031-2033
DOI: 10.2355/tetsutohagane1955.51.11_2025
Google Scholar
[21]
D. Webster, J. H. Woodhead. Effect of 0.03 % Nb on the ferrite grain size of mild steel. JISI. 202 (1964) 987-994.
Google Scholar
[22]
G. L. Fisher, R.H. Geils. The effect of columbium on the alpha-gamma transformation in a low alloy Ni-Cu steel. Trans. Met. Soc. AIME. 245 (1969) 2405-2412.
Google Scholar
[23]
W. B. Morrinson. The influence of small niobium additions on the properties of carbon-manganese steels. JISI. 201 (1963) 317-325.
Google Scholar
[24]
A. Brownrigg, R. Boelen. The effect of Nb on hardenability of C-Mn-Si-Al steels. Intern. Inst. of Welding (I.I.W. Publ. Sess. Met. Technol. Conference); Sidney, Australia, 1976, Serie A, Sess. 8-6.
Google Scholar
[25]
S. Kanazawa et al. On the behavior of precipitates in the Nb-Mo heat-treated high strength steel having 80 kg/mm2 tensile strength. Trans. Japan Inst. Metals. 8 (1967) 113-119. https://www.jim.or.jp/journal/e/pdf3/8/02/113.pdf
DOI: 10.2320/matertrans1960.8.113
Google Scholar
[26]
M.H. Thomas, G. M. Michael. The influence of Nb and Nb(C,N) precipitation on the formation of proeutectoid ferrite in low alloy Steel. Intern. Conf. on Solid-Solid Phase Transformation, Proc., Carnegie Mellon Univ., Pittsburgh, Pennsylvania, Sep. 1982.
Google Scholar
[27]
J. M. Gray, R. B. G., Yeo. Columbium carbonitride precipitation in low-alloy steels with particular emphasis on precipitate-row formation. Trans. ASM. 61 (1968) 255-269.
Google Scholar
[28]
M. Tanino, K. Aoki. The Precipitation behavior and the strengthening effect of NbC during tempering and during continuous cooling. Trans. I.S.I. Japan. 8 (1968) 337-345. https://www.jstage.jst.go.jp/article/isijinternational1966/8/5/8_337/_article/-char/en
DOI: 10.2355/isijinternational1966.8.337
Google Scholar
[29]
R. M. Brito, H. J. Kestenbach. On the dispersion hardening potential of interphase precipitation in micro-alloyed niobium steel. J Mater. Sci. 16 (1981) 1257–1263. https://doi.org/10.1007/ BF01033840
DOI: 10.1007/bf01033840
Google Scholar
[30]
A. le Bon, J. Rofes-Vernis, C. Rossard. Recrystallization and precipitation during hot working of a Nb-Bearing HSLA Steel, Metal Science. 9 (1975) 36-40
DOI: 10.1179/030634575790444919
Google Scholar
[31]
J. J. Jonas, I. Weiss. Effect of precipitation on recrystallization in microalloyed steels. Material Science. 13 (1979) 238-245
DOI: 10.1179/msc.1979.13.3-4.238
Google Scholar
[32]
I. Weiss, J. J. Jonas. Interaction between recrystallization and precipitation during the high temperature deformation of HSLA steels. Metall. Mater. Trans. A. 10 (1979) 831–840
DOI: 10.1007/BF02658301
Google Scholar
[33]
I. Weiss, J. J. Jonas. Dynamic precipitation and coarsening of niobium carbonitrides during the hot compression of HSLA steels. Metall. Mater. Trans. A. 11 (1980) 403–410
DOI: 10.1007/BF02654564
Google Scholar
[34]
Ray, A. and Bhadeshia, H.K.D.H. Niobium in microalloyed rail steels. In: HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, TMS
DOI: 10.1007/978-3-319-48767-0_3
Google Scholar
[35]
M.J. Luton et al. Interaction between deformation, recrystallization and precipitation in niobium steels. Metall. Mater. Trans. A. 11 (1980) 411-420
DOI: 10.1007/BF02654565
Google Scholar
[36]
L. Z. Meyer. Metallkd, Bd. 58 (1967) 334. In: L. Meyer. International Journal of Materials Research. 58 (1967) 396-401
Google Scholar
[37]
Klinkenberg, C., Trute, S. and Bleck, W. Niobium in engineering steels for automotive applications. Steel Research International. 77 (2206) 698-703. https://doi.org/10.1002/ srin.200606450
DOI: 10.1002/srin.200606450
Google Scholar
[38]
R. Coladas et al. The influence of niobium on the austenite processing of medium and high carbon steels. In: The hot deformation of austenite, Symposium. Ballance, J. B., Ed., New York, 1976, p.341.
Google Scholar
[39]
X. Chen et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels. Materials and Design. 53 (2014) 888–901
DOI: 10.1016/j.matdes.2013.07.037
Google Scholar
[40]
K. Hausmann et al. The influence of Nb on transformation behavior and mechanical properties of TRIP-assisted bainitic-ferritic sheet steels. Materials Science and Engineering A. 588, (2013) 142-150
DOI: 10.1016/j.msea.2013.08.023
Google Scholar
[41]
H. Hu et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Materials and Design. 84 (2015) 95-99
DOI: 10.1016/j.matdes.2015.06.133
Google Scholar
[42]
Z. LI et al. Microstructure evolution during continuous cooling in niobium microalloyed high carbon steels. Metals and Materials International. 20 (2014) 801-806
DOI: 10.1007/s12540-014-5001-2
Google Scholar
[43]
P. C. Liu et al. The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels. Materials Letters. 279 (2020) 128520
DOI: 10.1016/j.matlet.2020.128520
Google Scholar
[44]
D. J. Minicucci et al. Development of niobium microalloyed steel for railway wheel with pearlitic bainitic microstructure. Materials Research. 22 (2019)
DOI: 10.1590/1980-5373-MR-2019-0324
Google Scholar
[45]
P. P. Senthil et al. Influence of niobium microalloying on the microstructure and mechanical properties of high carbon nano bainitic steel. Procedia Structural Integrity. 14 (2019) 729–737
DOI: 10.1016/j.prostr.2019.05.091
Google Scholar
[46]
A. B. Rezende et al. Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel. Wear. 456–457 (2020) 203377
DOI: 10.1016/j.wear.2020.203377
Google Scholar
[47]
A. B. Rezende et al. Effect of niobium and molybdenum addition on the wear resistance and the rolling contact fatigue of railway wheels. Wear. 466–467 (2020) 203571
DOI: 10.1016/j.wear.2020.203571
Google Scholar
[48]
Y. Wang et al. Influence of Nb on microstructure and property of low-carbon Mn series air-cooled bainitic steel. Journal of Iron and Steel Research International. 17 (2010) 49–53
DOI: 10.1016/S1006-706X(10)60044-1
Google Scholar
[49]
M.A. Altuna et al. Precipitation of Nb in ferrite after austenite conditioning. Part II: strengthening contribution in High-Strength Low-Alloy (HSLA) steels. Metall. Mater. Trans. A. 43 (2012) 4571-4586
DOI: 10.1007/s11661-012-1270-x
Google Scholar
[50]
S. Shanmugam et al. Microstructure of high strength niobium-containing pipeline steel. Materials Science and Engineering A. 441 (2006) 215–229
DOI: 10.1016/j.msea.2006.08.017
Google Scholar
[51]
B. Wang, J. Lian. Effect of microstructure on low-temperature toughness of a low carbon Nb–V–Ti microalloyed pipeline steel. Materials Science and Engineering A. 592 (2014) 50-56
DOI: 10.1016/j.msea.2013.10.089
Google Scholar
[52]
C. Chattopadhyay et al. Improved wear resistance of medium carbon microalloyed bainitic steels. Wear. 289 (2012) 168-179
DOI: 10.1016/j.wear.2012.03.005
Google Scholar