Niobium Solubility in Austenite in the Presence of Niobium Carbides, Nitrides and Carbonitrides

Article Preview

Abstract:

Niobium is added to carbon steels in small amounts (< 0.1weight %), thus being called a microalloying element, to increase mechanical strength and toughness. When added to steel, niobium is partly soluble in the matrix and another part combines with carbon and nitrogen forming a family of NbxCyNz precipitates (niobium carbides, nitrides or carbonitrides), where the values ​​of x, y, z depend on the temperature and the chemical composition of the steel. The solubility equations for niobium in austenite available in the literature only provide the niobium content that could be solubilized at a given temperature. But when niobium is added above the solubility limit, the excess niobium will not only form the NbxCyNz family of precipitates. This is what the proposed model calculates. The proposed model is easy to apply and provided results are very close to those determined experimentally by different researchers, who used different techniques such as atom probe, or matrix dissolution with precipitate filtration, for example. Although the proposed model has been used to calculate niobium in solution in austenite, the same can be applied to any other precipitate, such as carbides, nitrides or carbonitrides of vanadium and titanium, for example.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-52

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. R. Mei. Effects of niobium microaddition on carbon steels. Defect and Diffusion Forum, 420 (2022) 101-117

DOI: 10.4028/p-5kc1x5

Google Scholar

[2] ASM. Selected values of the thermodynamic properties of binary alloys, ASM, USA, 1973, p.846.

Google Scholar

[3] Metals Handbook, v. 8, ASM, USA, 1973.

Google Scholar

[4] H. Nordberg, B. Aronsson. Solubility of niobium carbide in austenite, JISI. 206 (1968) 1263-1266.

Google Scholar

[5] F. D. Kazinczi et al. Some properties of niobium treated mild steel. Jerkontorets Annaler, Stockholm, 147 (1963) 408. In: Columbium as a micro-alloying element in steels and its effect on welding technology. T. M. Nore'n. Washington, DC, U. S. Department of Commerce, Office of Technical Services. August 30, 1963, 53 p. https://apps.dtic.mil/sti/pdfs/AD0424983.pdf

Google Scholar

[6] T. Mori et al. Thermodynamic properties of niobium carbides and nitrides in steels. Tetsu to Hagane. 54 (1968) 763-776. https://www.jstage.jst.go.jp/article/tetsutohagane1955/ 54/7/54_7_763/_pdf/-char/en

DOI: 10.2355/tetsutohagane1955.54.7_763

Google Scholar

[7] K. Narita. Physical chemistry of the groups IVA (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel. Trans. ISI Japan. 15 (1975) 145 -152. https://www.jstage.jst.go.jp/article/ isijinternational1966/15/3/15_145/_pdf/-char/en

DOI: 10.2355/isijinternational1966.15.145

Google Scholar

[8] V. K. Lakshmanan, J. S. Kirkaldy. Solubility product for niobium carbide in austenite. Metallurgical Transactions A. 15 (1984) 541-544 https://link.springer.com/content/pdf/

DOI: 10.1007/bf02644978

Google Scholar

[9] E. J. Palmiere, C. I. Garcia, A. J. De Ardo. Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium. Metall. Mater. Trans. A. 25 (1994) 277–286

DOI: 10.1007/BF02647973

Google Scholar

[10] W. Stuckens. Pure cementite and W, V, Nb, and Ta substituted cementites. Ann. Chim. 8 (1963) 229-249.

Google Scholar

[11] W. Stuckens and A. Michel. Variations in the stoichiometry of pure cementite. Comp. Rend. 253 (1961) 2358-2360.

Google Scholar

[12] Handbook of Chemistry and Physics. 58ª ed., CRC Press, USA, 1977, p. F-215.

Google Scholar

[13] P.C. Liu et al. The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels, Materials Letters. 279 (2020) 128520

DOI: 10.1016/j.matlet.2020.128520

Google Scholar

[14] R. C. Hudd et al. A method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride. JISI. 209 (1971) 121-125.

Google Scholar

[15] S. Koyama et al. Effects of Mn, Si, Cr, and Ni on the solution and precipitation of niobium carbide in iron austenite. J. Japan Inst. Metals. 35 (1971) 1089-1094.

DOI: 10.2320/jinstmet1952.35.11_1089

Google Scholar

[16] D. C. Houghton et al. Characterization of carbonitrides in Ti bearing HSLA steel. Int. Symp. Niobium 81, San Francisco, USA, Nov. 8-11, 1981.

Google Scholar

[17] S. R. Keown and W.G. Wilson. In: Thermomechanical processing of microalloyed austenite. TMS-AIME, Warrendale, PA, 1981, p.343–56.

Google Scholar

[18] K. J. Irvine et al. Grain refined C-Mn steels. JISI. 205 (1967) 161-182.

Google Scholar

[19] P. Mandry and W. Dornelas. Solubilité des précipités de niobium dans l'austénite dans le cas d'aciers de construction à bas carbone et contenant de très faibles quantités de niobium. Compt. Rendus, Acad. Sci. Paris, Série C. 263 (1966) 1118-1121.

DOI: 10.1051/metal/196966070563

Google Scholar

[20] T. Mori et al. Thermodynamic behaviors of niobium carbide-nitride and sulfide in steel. Tetsu to Hagane. 51 (1965) 2031-2033

DOI: 10.2355/tetsutohagane1955.51.11_2025

Google Scholar

[21] D. Webster, J. H. Woodhead. Effect of 0.03 % Nb on the ferrite grain size of mild steel. JISI. 202 (1964) 987-994.

Google Scholar

[22] G. L. Fisher, R.H. Geils. The effect of columbium on the alpha-gamma transformation in a low alloy Ni-Cu steel. Trans. Met. Soc. AIME. 245 (1969) 2405-2412.

Google Scholar

[23] W. B. Morrinson. The influence of small niobium additions on the properties of carbon-manganese steels. JISI. 201 (1963) 317-325.

Google Scholar

[24] A. Brownrigg, R. Boelen. The effect of Nb on hardenability of C-Mn-Si-Al steels. Intern. Inst. of Welding (I.I.W. Publ. Sess. Met. Technol. Conference); Sidney, Australia, 1976, Serie A, Sess. 8-6.

Google Scholar

[25] S. Kanazawa et al. On the behavior of precipitates in the Nb-Mo heat-treated high strength steel having 80 kg/mm2 tensile strength. Trans. Japan Inst. Metals. 8 (1967) 113-119. https://www.jim.or.jp/journal/e/pdf3/8/02/113.pdf

DOI: 10.2320/matertrans1960.8.113

Google Scholar

[26] M.H. Thomas, G. M. Michael. The influence of Nb and Nb(C,N) precipitation on the formation of proeutectoid ferrite in low alloy Steel. Intern. Conf. on Solid-Solid Phase Transformation, Proc., Carnegie Mellon Univ., Pittsburgh, Pennsylvania, Sep. 1982.

Google Scholar

[27] J. M. Gray, R. B. G., Yeo. Columbium carbonitride precipitation in low-alloy steels with particular emphasis on precipitate-row formation. Trans. ASM. 61 (1968) 255-269.

Google Scholar

[28] M. Tanino, K. Aoki. The Precipitation behavior and the strengthening effect of NbC during tempering and during continuous cooling. Trans. I.S.I. Japan. 8 (1968) 337-345. https://www.jstage.jst.go.jp/article/isijinternational1966/8/5/8_337/_article/-char/en

DOI: 10.2355/isijinternational1966.8.337

Google Scholar

[29] R. M. Brito, H. J. Kestenbach. On the dispersion hardening potential of interphase precipitation in micro-alloyed niobium steel. J Mater. Sci. 16 (1981) 1257–1263. https://doi.org/10.1007/ BF01033840

DOI: 10.1007/bf01033840

Google Scholar

[30] A. le Bon, J. Rofes-Vernis, C. Rossard. Recrystallization and precipitation during hot working of a Nb-Bearing HSLA Steel, Metal Science. 9 (1975) 36-40

DOI: 10.1179/030634575790444919

Google Scholar

[31] J. J. Jonas, I. Weiss. Effect of precipitation on recrystallization in microalloyed steels. Material Science. 13 (1979) 238-245

DOI: 10.1179/msc.1979.13.3-4.238

Google Scholar

[32] I. Weiss, J. J. Jonas. Interaction between recrystallization and precipitation during the high temperature deformation of HSLA steels. Metall. Mater. Trans. A. 10 (1979) 831–840

DOI: 10.1007/BF02658301

Google Scholar

[33] I. Weiss, J. J. Jonas. Dynamic precipitation and coarsening of niobium carbonitrides during the hot compression of HSLA steels. Metall. Mater. Trans. A. 11 (1980) 403–410

DOI: 10.1007/BF02654564

Google Scholar

[34] Ray, A. and Bhadeshia, H.K.D.H. Niobium in microalloyed rail steels. In: HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, TMS

DOI: 10.1007/978-3-319-48767-0_3

Google Scholar

[35] M.J. Luton et al. Interaction between deformation, recrystallization and precipitation in niobium steels. Metall. Mater. Trans. A. 11 (1980) 411-420

DOI: 10.1007/BF02654565

Google Scholar

[36] L. Z. Meyer. Metallkd, Bd. 58 (1967) 334. In: L. Meyer. International Journal of Materials Research. 58 (1967) 396-401

Google Scholar

[37] Klinkenberg, C., Trute, S. and Bleck, W. Niobium in engineering steels for automotive applications. Steel Research International. 77 (2206) 698-703. https://doi.org/10.1002/ srin.200606450

DOI: 10.1002/srin.200606450

Google Scholar

[38] R. Coladas et al. The influence of niobium on the austenite processing of medium and high carbon steels. In: The hot deformation of austenite, Symposium. Ballance, J. B., Ed., New York, 1976, p.341.

Google Scholar

[39] X. Chen et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels. Materials and Design. 53 (2014) 888–901

DOI: 10.1016/j.matdes.2013.07.037

Google Scholar

[40] K. Hausmann et al. The influence of Nb on transformation behavior and mechanical properties of TRIP-assisted bainitic-ferritic sheet steels. Materials Science and Engineering A. 588, (2013) 142-150

DOI: 10.1016/j.msea.2013.08.023

Google Scholar

[41] H. Hu et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Materials and Design. 84 (2015) 95-99

DOI: 10.1016/j.matdes.2015.06.133

Google Scholar

[42] Z. LI et al. Microstructure evolution during continuous cooling in niobium microalloyed high carbon steels. Metals and Materials International. 20 (2014) 801-806

DOI: 10.1007/s12540-014-5001-2

Google Scholar

[43] P. C. Liu et al. The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels. Materials Letters. 279 (2020) 128520

DOI: 10.1016/j.matlet.2020.128520

Google Scholar

[44] D. J. Minicucci et al. Development of niobium microalloyed steel for railway wheel with pearlitic bainitic microstructure. Materials Research. 22 (2019)

DOI: 10.1590/1980-5373-MR-2019-0324

Google Scholar

[45] P. P. Senthil et al. Influence of niobium microalloying on the microstructure and mechanical properties of high carbon nano bainitic steel. Procedia Structural Integrity. 14 (2019) 729–737

DOI: 10.1016/j.prostr.2019.05.091

Google Scholar

[46] A. B. Rezende et al. Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel. Wear. 456–457 (2020) 203377

DOI: 10.1016/j.wear.2020.203377

Google Scholar

[47] A. B. Rezende et al. Effect of niobium and molybdenum addition on the wear resistance and the rolling contact fatigue of railway wheels. Wear. 466–467 (2020) 203571

DOI: 10.1016/j.wear.2020.203571

Google Scholar

[48] Y. Wang et al. Influence of Nb on microstructure and property of low-carbon Mn series air-cooled bainitic steel. Journal of Iron and Steel Research International. 17 (2010) 49–53

DOI: 10.1016/S1006-706X(10)60044-1

Google Scholar

[49] M.A. Altuna et al. Precipitation of Nb in ferrite after austenite conditioning. Part II: strengthening contribution in High-Strength Low-Alloy (HSLA) steels. Metall. Mater. Trans. A.  43 (2012) 4571-4586

DOI: 10.1007/s11661-012-1270-x

Google Scholar

[50] S. Shanmugam et al. Microstructure of high strength niobium-containing pipeline steel. Materials Science and Engineering A. 441 (2006) 215–229

DOI: 10.1016/j.msea.2006.08.017

Google Scholar

[51] B. Wang, J. Lian. Effect of microstructure on low-temperature toughness of a low carbon Nb–V–Ti microalloyed pipeline steel. Materials Science and Engineering A. 592 (2014) 50-56

DOI: 10.1016/j.msea.2013.10.089

Google Scholar

[52] C. Chattopadhyay et al. Improved wear resistance of medium carbon microalloyed bainitic steels. Wear. 289 (2012) 168-179

DOI: 10.1016/j.wear.2012.03.005

Google Scholar