[1]
B. Mirzakhani, M. Mansourinejad, Tensile properties of AA6061 in different designated precipitation hardening and cold working, Procedia Eng. 10 (2011) 136-140.
DOI: 10.1016/j.proeng.2011.04.025
Google Scholar
[2]
A. Alsammarraie, S.E. Al-basaqr, I.A. Muhsin, Studying the tribological behavior of the Counterface Materials 60/40 Brass alloy under Dry Sliding Contact, IOP Conf. Ser.: Mater. Sci. Eng. 870 (2020) 012151.
DOI: 10.1088/1757-899x/870/1/012151
Google Scholar
[3]
Z. Xu, X. Liu, R. Chen, D. Shan, Optimal thermal process parameters of hot stamping AA 6061, IOP Conf. Ser.: Mater. Sci. Eng. 612 (2019) 032024.
DOI: 10.1088/1757-899x/612/3/032024
Google Scholar
[4]
I. Hejazi, S.E. Mirsalehi, Mechanical and metallurgical characterization of AA6061 friction stir welded joints using microhardness map, Trans. Nonferrous Met. Soc. China 26 (2016) 2313-2319.
DOI: 10.1016/s1003-6326(16)64351-0
Google Scholar
[5]
C. Zhang, et al., Effect of tempering temperature on impact wear behavior of 30Cr3Mo2WNi hot-working die steel, Front. Mater. 6 (2019) 149.
DOI: 10.3389/fmats.2019.00149
Google Scholar
[6]
T. Newswander, B. Crowther, G. Gubbels, R. Senden, Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications, Mater. Technol. Appl. Opt., Struct., Components, Sub-Syst. 8837 (2013) 21-35.
DOI: 10.1117/12.2024369
Google Scholar
[7]
Y.W. Tham, M.W. Fu, H.H. Hng, Q.X. Pei, K.B. Lim, Microstructure and properties of Al-6061 alloy by equal channel angular extrusion for 16 passes, Mater. Manuf. Process. 22 (2007) 819-824.
DOI: 10.1080/10426910701446754
Google Scholar
[8]
Y. Zedan, K. Jabbari, S.A. Niknam, V. Songmene, Machinability study of AA6061 under various heat treatment conditions, Iran J. Sci. Technol., Trans. Mech. Eng. 45 (2021) 543-553.
DOI: 10.1007/s40997-021-00425-5
Google Scholar
[9]
F. Senhadji, F. Belarifi, F. Robbe-Valloire, Experimental investigation of friction coefficient and wear rate of brass and bronze under lubrication conditions, Tribol. Ind. 38 (2016) 102-107.
Google Scholar
[10]
M. Bartoszuk, B.M.S. Eddine, Numerical modelling of heat dissipation for the Pin-On-Disc type tribometer, Int. J. Eng. Model. 34 (2021) 19-30.
DOI: 10.31534/engmod.2021.1.ri.02v
Google Scholar
[11]
M. Mohammadi, H.R. Ashtiani, Influence of heat treatment on the AA6061 and AA6063 aluminum alloys behavior at elevated deformation temperature, Iran J. Mater. Sci. Eng. 18 (2021).
Google Scholar
[12]
D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, T. Epicier, Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminum alloy, Mater. Sci. Eng.: A 528 (2011) 2718-2724.
DOI: 10.1016/j.msea.2010.12.011
Google Scholar
[13]
J. Jebeen Moses, S. Joseph Sekhar, Investigation on the tensile strength and microhardness of AA6061/TiC composites by stir casting, Trans. Indian Inst. Met. 70 (2017) 1035-1046.
DOI: 10.1007/s12666-016-0891-y
Google Scholar
[14]
T. Küçükömeroğlu, L. Kara, The friction and wear properties of CuZn39Pb3 alloys under atmospheric and vacuum conditions, Wear 309 (2014) 21-28.
DOI: 10.1016/j.wear.2013.10.003
Google Scholar
[15]
K. Umanath, S.T. Selvamani, K. Palanikumar, R. Sabarikreeshwaran, Dry sliding wear behavior of AA6061-T6 reinforced SiC and Al2O3 particulate hybrid composites, Procedia Eng. 97 (2014) 694-702.
DOI: 10.1016/j.proeng.2014.12.299
Google Scholar
[16]
O. Ismail, Abrasive wear behavior of various reinforced AA6061 matrix composites produced with hot pressing process: A comparative study: Abriebverhalten von verschiedenen durch Heißpressen hergestellten verstärkten AA6061‐Matrix‐Kompositen: Eine Vergleichsstudie, Materialwissenschaft und Werkstofftechnik. 48 : 6 (2017) 589-599.
DOI: 10.1002/mawe.201600562
Google Scholar
[17]
A.B. Gurcan, T.N. Baker, Wear behavior of AA6061 aluminum alloy and its composites, Wear. 188: 1-2 (1995) 185-191.
DOI: 10.1016/0043-1648(95)06639-x
Google Scholar
[18]
D. Aruri, K. Adepu, K. Adepu, K. Bazavada, Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC+ Gr) and (SiC+ Al2O3)] fabricated by friction stir processing, J. Mater. Res. Technol. 2 : 4 (2013) 362-369.
DOI: 10.1016/j.jmrt.2013.10.004
Google Scholar
[19]
H. Eftekharinia, A.A. Amadeh, A. Khodabandeh, M. Paidar, Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes, Rare Met. 39 : 4 (2020) 429-435.
DOI: 10.1007/s12598-016-0691-x
Google Scholar
[20]
J. Abuthakir, R. Subramanian, K. Somasundara Vinoth, G. Venkatesh, G. Suganya Priyadharshini, K. Krishnakumar, Studies on Microstructural Evolution and Wear Behavior of AlNi intermetallic Reinforced AA6061 alloy in T6 condition, Arch. Metall. Mater. 67 (2022).
DOI: 10.24425/amm.2022.139670
Google Scholar
[21]
M. Jenek, P. Schlafka, An influence of slag refining on the structure and mechanical properties of the brass CuZn39Pb2, Int. J. Adv. Manuf. Technol. 117 : 7-8 (2021) 2519-2525.
DOI: 10.1007/s00170-021-07321-x
Google Scholar
[22]
J. James, Tribological behavior and wear fashion of processed AA6061/ZrO2 composite, Ind. Lubr. Tribol. 70 : 9 (2018) 1815-1824.
DOI: 10.1108/ilt-12-2017-0382
Google Scholar
[23]
M. Jenek, P. Schlafka, An influence of slag refining on the structure and mechanical properties of the brass CuZn39Pb2, Int. J. Adv. Manuf. Technol. 117 : 7-8 (2021) 2519-2525.
DOI: 10.1007/s00170-021-07321-x
Google Scholar
[24]
L. Natrayan, M.S. Kumar, Optimization of wear behavior on AA6061/Al2O3/SiC metal matrix composite using squeeze casting technique–Statistical analysis, Mater. Today: Proc. 27 (2020) 306-310.
DOI: 10.1016/j.matpr.2019.11.038
Google Scholar
[25]
J.A.K. Gladston, I. Dinaharan, N.M. Sheriff, J.D.R. Selvam, Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting, J. Asian Ceram. Soc. 5 : 2 (2017) 127-135.
DOI: 10.1016/j.jascer.2017.03.005
Google Scholar
[26]
J. Singh, S.S. Chatha, B.S. Sidhu, Abrasive wear behavior of newly developed weld overlaid tillage tools in laboratory and in actual field conditions, J. Manuf. Process. 55 (2020) 143-152.
DOI: 10.1016/j.jmapro.2020.03.040
Google Scholar
[27]
K. Valtonen, V. Ratia, N. Ojala, V.-T. Kuokkala, Comparison of laboratory wear test results with the in-service performance of cutting edges of loader buckets, Wear. 388-389 (2017) 93-100.
DOI: 10.1016/j.wear.2017.06.005
Google Scholar
[28]
M. Bougoffa, S.E. Bachirbey, M.N. Benouali, T. Sayah, M. Fellah, M.A. Samad, Dry Sliding Friction and Wear Behavior of CuZn37Pb2 and AA7075 Under Industrial and Laboratory Conditions, J. Bio Tribo Corros. 7 (2021) 38.
DOI: 10.1007/s40735-021-00475-x
Google Scholar
[29]
K.J. Kubiak, T.W. Liskiewicz, T.G. Mathia, Surface morphology in engineering applications: influence of roughness on sliding and wear in dry fretting, Tribol. Int. 44 (2011) 1427-1432.
DOI: 10.1016/j.triboint.2011.04.020
Google Scholar
[30]
L. Pradeep, K. Menezes, V.K. Satish, Influence of roughness parameters and surface texture on friction during sliding of pure lead over 080 M40 steel, Int. J. Adv. Manuf. Technol. 43 (2009) 731-743.
DOI: 10.1007/s00170-008-1756-2
Google Scholar
[31]
S. Senhadji, F. Belarifi, F. Robbe-Valloire, Experimental investigation of friction coefficient and wear rate of brass and bronze under lubrication conditions, Tribol. Ind. 38 (2016) 102-107.
Google Scholar
[32]
I.L. Singer, S. Fayeulle, P.D. Ehni, Wear behavior of triode-sputtered MoS2 coatings in dry sliding contact with steel and ceramics, Wear. 195 (1996) 7-20.
DOI: 10.1016/0043-1648(95)06661-6
Google Scholar
[33]
M. Samiul Kaiser, M.S. Kaiser, Wear Behavior of Commercial Pure Copper with Al and Zn under Dry, Wet and Corrosive Environment, J. Mater. Environ. Sci. 11 (2020) 551-563.
Google Scholar
[34]
R. Demirsöz, Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications, Lubricants. 10 (2022) 212.
DOI: 10.3390/lubricants10090212
Google Scholar
[35]
S.P.S. Yadav, Effect of Pin Geometry and Orientation on Friction and Wear Behavior of Nickel-Coated EN8 Steel Pin and Al6061 Alloy Disc Pair, Adv. Mater. Sci. Eng. 3274672 (2022).
DOI: 10.1155/2022/3274672
Google Scholar
[36]
I. Argatov, Y.S. Chai, Contact Geometry Adaptation in Fretting Wear: A Constructive Review, Front. Mech. Eng. 6 (2020).
DOI: 10.3389/fmech.2020.00051
Google Scholar
[37]
S. Mezlini, Effect of indenter geometry and relationship between abrasive wear and hardness in early stage of repetitive sliding, Wear. 260 (2006) 412-421.
DOI: 10.1016/j.wear.2005.02.106
Google Scholar
[38]
T. Mishra, M. de Rooij, D.J. Schipper, The effect of asperity geometry on the wear behavior in sliding of an elliptical asperity, Wear. 470-471 (2021) 203615.
DOI: 10.1016/j.wear.2021.203615
Google Scholar
[39]
A. Jourani, S. Bouvier, Friction and wear mechanisms of 316L stainless steel in dry sliding contact: effect of abrasive particle size, Tribol. Trans. 58 (2015) 131-139.
DOI: 10.1080/10402004.2014.955229
Google Scholar
[40]
R. Autay, M. Kchaou, K. Elleuch, F. Dammak, Tribological behavior of carbon and low alloy steels: effect of mechanical properties and test conditions, Tribol. Mater. Surf. Interfaces. 5 (2013) 133-140.
DOI: 10.1179/1751584x11y.0000000022
Google Scholar
[41]
Y. Lyu, J. Wahlström, M. Tu, U. Olofsson, Friction, Wear and emission tribometer study of non-asbestos organic pins sliding against AlSiC MMC Discs, Tribol. Ind. 40 (2018) 274-282.
DOI: 10.24874/ti.2018.40.02.11
Google Scholar
[42]
S.-C. Olaru, Investigation of the sound intensity level in the case of a universal lathe, MATEC Web Conf. 112 (2017) 6.
Google Scholar
[43]
L.L. Tabacaru, E. Axinte, G. Musca, Experimental research on the elastic deformation mode of S235JR rolled steel fastened between the centers of a Universal Lathe, Mater. Sci. Eng. 161 (2016) 012050.
DOI: 10.1088/1757-899x/161/1/012050
Google Scholar
[44]
S.H. Junaidi, Y. Ahmad, E. Jumadi, Implementation analysis of cutting tool carbide with cast iron material S45 C on universal lathe, J. Phys.: Conf. Ser. 930 (2017) 012044.
DOI: 10.1088/1742-6596/930/1/012044
Google Scholar
[45]
K. Krishna, K.M. Karthik, Evaluation of Hardness Strength of Aluminum Alloy (CuZn37Pb2) Reinforced With Silicon Carbide, Int. J. Recent Technol. Mech. Electr. Eng. 1 (2014) 014-018.
Google Scholar
[46]
M. Mia, N.R. Dhar, Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition, Neural Comput. Appl. 31 (2019) 2349-2370.
DOI: 10.1007/s00521-017-3192-4
Google Scholar
[47]
M. Perez, Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: from thermoelectric power measurements to the prediction of dimensional changes, Acta Mater. 57 (2009) 3170-3181.
DOI: 10.1016/j.actamat.2009.03.024
Google Scholar
[48]
M. Barszcz, Evaluation of tribological properties of selected engine oils during operation of the friction pairs of steel-on-steel, E3S Web Conf. 19 (2017) 03027.
DOI: 10.1051/e3sconf/20171903027
Google Scholar
[49]
A. Senatore, G. Risitano, L. Scappaticci, D. D'Andrea, Investigation of the Tribological Properties of Different Textured Lead Bronze Coatings under Severe Load Conditions, Lubricants. 9 (2021) 34.
DOI: 10.3390/lubricants9040034
Google Scholar
[50]
F. Schultheiss, D. Johansson, V. Bushlya, J. Zhou, K. Nilsson, J.-E. Ståhl, Comparative study on the machinability of lead-free brass, J. Clean. Prod. 149 (2017) 366-377.
DOI: 10.1016/j.jclepro.2017.02.098
Google Scholar
[51]
P. García, S. Rivera, M. Palacios, J. Belzunce, Comparative study of the parameters influencing the machinability of leaded brasses, Eng. Fail. Anal. 17 (2010) 771-776.
DOI: 10.1016/j.engfailanal.2009.08.012
Google Scholar
[52]
N. Gane, The effect of lead on the friction and machining of brass, Philos. Mag. A. 43 (1981) 545-566.
Google Scholar
[53]
S. Kurama, I. Schulz, M. Herrmann, Wear behavior of alpha- and alpha/beta-SiAlON ceramics stabilized with Nd2O3 and Y2O3, J. Eur. Ceram. Soc. 29 (2009) 155-162.
DOI: 10.1016/j.jeurceramsoc.2008.05.040
Google Scholar
[54]
J. Tong, Chemical constitution and abrasive wear behavior of pangolin scales, J. Mater. Sci. Lett. 14 (1995) 1468-1470.
DOI: 10.1007/bf00462216
Google Scholar
[55]
M. Nakamura, Wear behavior of α-Si3N4 ceramics reinforced by rod-like β-Si3N4 grains, Wear. 254 (2003) 94-102.
DOI: 10.1016/s0043-1648(02)00293-4
Google Scholar
[56]
S. Kurama, I. Schulz, M. Herrmann, Wear behavior of α- and α/β-SiAlON ceramics stabilized with Nd2O3 and Y2O3, J. Eur. Ceram. Soc. 29 (2009) 155-162.
DOI: 10.1016/j.jeurceramsoc.2008.05.040
Google Scholar
[57]
G. Yumusak, A. Leyland, A. Matthews, A microabrasion wear study of nitrided α-Ti and β-TiNb PVD metallic thin films, pre-deposited onto titanium alloy substrates, Surf. Coat. Technol. 442 (2022) 128423.
DOI: 10.1016/j.surfcoat.2022.128423
Google Scholar
[58]
X.-Q. Wang, Design of high strength and wear-resistance β-Ti alloy via oxygen-charging, Acta Mater. 227 (2022) 117686.
DOI: 10.1016/j.actamat.2022.117686
Google Scholar
[59]
R.O. Ferrreira, Characterization and evolution of the coefficient of friction during pin on disc tribotest: Comparison between C10200 Cu, AA6082-T6 Al and C36000 brass pins under varying normal loads, Tribol. Int. 138 (2019) 403-414.
DOI: 10.1016/j.triboint.2019.06.013
Google Scholar
[60]
P.C. Okonkwo, G. Kelly, B.F. Rolfe, M.P. Pereira, The effect of sliding speed on the wear of steel–tool steel pairs, Tribol. Int. 97 (2016) 218-227.
DOI: 10.1016/j.triboint.2016.01.030
Google Scholar
[61]
O. Dalverny, S. Caperaa, O. Pantale, C. Sattouf, Identification of constitutive laws and friction laws adapted to high strain rates, J. Phys. IV. 12 (2002) 275-281.
Google Scholar
[62]
A. Jha, A. Rajput, M. Kumar, Wear behavior of high entropy alloys under different sliding conditions, Defect Diff. Forum 402 (2023) 47-56.
Google Scholar
[63]
S. Sivasankaran, Optimization on dry sliding wear behavior of yellow brass using face centered composite design, AIMS Mater. Sci. 6 (2019) 80-96.
DOI: 10.3934/matersci.2019.1.80
Google Scholar
[64]
J. Zhang, M. He, X. Sun, Wear resistance of composite coatings for high-speed applications, Defect Diff. Forum 400 (2023) 81-89.
Google Scholar
[65]
Q. Zhao, X. Yang, H. Li, Investigation of wear and friction characteristics of advanced steel alloys, Defect Diff. Forum 399 (2022) 23-31.
Google Scholar
[66]
B.M. Seyf Eddine, An assessment of tribological characteristics under different operating condition, Adv. Mater. Lett. 11 (2020) 2.
DOI: 10.5185/amlett.2020.021478
Google Scholar
[67]
Y. Chen, J. Wang, X. Li, The effect of surface modification on the wear performance of metal matrix composites, Defect Diff. Forum 398 (2022) 102-110.
Google Scholar
[68]
B.M. Seyf Eddine, M. Noura, A Comparative Study on the tribological behavior of SAE-AISI 1055 steel and brass (CuZn37Pb2) a pin on disc type of contact, Defect Diffus. Forum. 397 (2019) 147-160.
DOI: 10.4028/www.scientific.net/ddf.397.147
Google Scholar
[69]
M.Nurizinova, S.Ramankulov, M.Skakov, Evaluation of advanced technology for the formation of research competence of physics students in the field of tribology, 4 (2022) 136-152.
DOI: 10.32014/2022.2518-1483.177
Google Scholar