Computational Study of Fluid Flow Past a Blunt Trailing Edge Cylinder

Article Preview

Abstract:

Flow past a two-dimensional D-shaped bluff body is numerically studied. This study uses two turbulence models, the standard k-ε turbulence model and the Shear Stress Transport (SST) turbulence model to simulate the fluid flow inside the computational domain. This study focuses on the pressure distribution on the D-shaped body and the wake region behind the bluff body. Variation of centreline mean velocity, variation of mean velocity profile and the wake half-width in the wake region are also investigated and the results are compared with experimental results available in the literature. The computational fluid dynamics software EASYCFD, which uses a finite-volume based discretization method is chosen to solve the governing equations. The first order upwind method is used to discretize the momentum equations, turbulent kinetic energy and turbulence dissipation rate equations. The Semi-Implicit Method for Pressure-Linked Equations-Consistent (SIMPLEC) method is implemented for the pressure velocity interactions. Numerical results show that the two turbulence models perform reasonably well in predicting this complex fluid flow. The drag coefficient of the bluff body has been calculated to be 0.758 and 0.679 using the standard k-ε and the Shear Stress Transport (SST) turbulence models respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-178

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Chen, J.Y. Tu, G.H. Yeoh, "Numerical simulation of turbulent wake flows behind two side-by-side cylinders", J. of Fluids Structs. 18 (2003) 387–403. doi:10.1016/ j.jfluidstructs. 2003. 08.005.

DOI: 10.1016/j.jfluidstructs.2003.08.005

Google Scholar

[2] D. Chatterjee, B. Mondal, P. Halder, Unsteady Forced Convection Heat Transfer Over a Semicircular Cylinder at Low Reynolds Numbers, Num. Heat Trans. Part A: Applications 63, No.6 (2013), 411-429

DOI: 10.1080/10407782.2013.742733

Google Scholar

[3] H.G.D. Goyder, Flow-induce vibration and noise in heat exchanger tube bundles, Proc. of the 12th International Heat Transfer Conf., Grenoble, France, August (2002).

DOI: 10.1615/ihtc12.3150

Google Scholar

[4] P.A. Irwin, Bluff body aerodynamics in wind engineering, J. of Wind Engg and Indus. Aerod. 96 (2008), 701–712.

DOI: 10.1016/j.jweia.2007.06.008

Google Scholar

[5] A.M. Abir, P.R. Chowdhury, and G.K. Saha, Numerical analysis of flow over bluff bodies of different shapes, (2023), Proceedings of the 13th International Conference on Marine Technology (MARTEC 2022), Available at SSRN:https://ssrn.com/abstract =4443832 or http:// dx.doi.org/.

DOI: 10.2139/ssrn.4443832

Google Scholar

[6] H. Jiang, L. Cheng, Hydrodynamic characteristics of flow past a square cylinder at moderate Reynolds numbers, Phys. of Fluids, 30(10) (2018), 104107-1-13.

DOI: 10.1063/1.5050439

Google Scholar

[7] S. Rodiguez, Applied Computational Fluid Dynamics and Turbulence Modelling, Springer, 2021, ISBN: 978-3-030-28693-4.

Google Scholar

[8] M.M. Zdravkovich, Flow around Circular Cylinders. Vol. 1: Fundamentals. Oxford: Oxford University Press. U.K. 1997, 350:375-378.

DOI: 10.1017/s0022112097227291

Google Scholar

[9] M.M. Zdravkovich, Flow around Circular Cylinders. Vol. 2: Applications. Oxford: Oxford University Press, U.K., 2003. https://books.google.co.bw/books?id=ApAqBlpSTtIC.

Google Scholar

[10] J.G. Leishman, Introduction to Aerospace Flight Vehicles, Embry-Riddle Aeronautical University, 2023, ISBN:979-8-9852614-0-0.

Google Scholar

[11] J.H. Gerrard, The wakes of cylindrical bluff bodies at low Reynolds number. Philosophical Trans. of the Royal Soc. of London A 288 (1978), 351–382. http://doi.org/10.1098/ rsta.1978.0020.

DOI: 10.1098/rsta.1978.0020

Google Scholar

[12] M. Coutanceau, J. Defaye, Circular cylinder wake configurations: A flow visualization survey, Applied Mech. Rev., 44 (1991), 255–305.

DOI: 10.1115/1.3119504

Google Scholar

[13] C.H.K. Williamson, Vortex dynamics in the cylinder wake, Annual Rev. of Fluid Mech., 28 (1996), 477–539.

DOI: 10.1146/annurev.fl.28.010196.002401

Google Scholar

[14] A.J. Smits, A Physical Introduction to Fluid Mechanics, John Wiley, New York, 2000.

DOI: 10.1017/S0022112003214919

Google Scholar

[15] M. Kiya, M. Arie, M, Viscous Shear Flow Past Small Bluff Bodies Attached to a Plane Wall, J. Fluid Mech., 69 (1975), 803-823.

DOI: 10.1017/S0022112075001693

Google Scholar

[16] N. Boisaubert, M. Coutanceau, P. Ehrmann, Comparative early development of wake vortices behind a short semicircular-section cylinder in two opposite arrangements, J. Fluid Mech., 327 (1996), 73-99.

DOI: 10.1017/S0022112096008464

Google Scholar

[17] X. Han and S. Krajnovi c´, Very Large Eddy Simulation of Passive Drag Control for a D-Shaped Cylinder, J. of Fluids Engng, 135 (2013).

DOI: 10.1115/1.4024654

Google Scholar

[18] B. Thiriaa, O. Cadota, J.F. Beaudoinb, Passive drag control of a blunt trailing edge cylinder, J. of Fluids and Structs., 25 (2009) 766–776.

DOI: 10.1016/j.jfluidstructs.2008.07.008

Google Scholar

[19] Koontse, M.D. and N.Subaschandar, Study of two Turbulence Models in Predicting the Drag of a Bluff Body, BIUST Teaching, Research & Innovation Symposium (TRDAIS 2023) Botswana International University of Science and Technology, Palapye, Botswana, 18-19 SEP 2023, 19-27, ISSN: 2521-2293.

Google Scholar

[20] E.J. Finnemore and E. Maurer, Fluid Mechanics with Civil Engineering Applications, 11th ed., McGraw Hill, New York, 2024. ISBN 978-1-264787296.

Google Scholar

[21] J.H. Spurk and N.Aksel, Fluid Mechanics, third ed., Springer, 2021, ISBN 978-3-030-30261-0.

DOI: 10.1007/978-3-030-30259-7

Google Scholar

[22] F.M. White, Viscous Fluid Flow, McGraw-Hill, 2006, ISBN 978-0-07-124493-0.

Google Scholar

[23] A.G. Lopes, EASYCFD: A Two-dimensional Computational Fluid Dynamics Software Manual. Ver 4.4.4, www.easycfd.net, 2020.

Google Scholar

[24] K.Langwane and N. Subaschandar, Numerical Prediction and Reduction of Pressure Loss of Air Flow Inside a Sharp 90˚ Elbow Using Turning Vanes, WSEAS Trans. on Fluid Mech., 16 (2021),127-140. E-ISSN: 1790-5087/2224-347X. DOI:https://10. 37394/232013. 2021. 16.13.

DOI: 10.37394/232013.2021.16.13

Google Scholar

[25] D.L. Savicki, A.Goulart, and G.Z. Becker, The simplified k-e Turbulence Model Applied to Numerical Simulation of the Stable Atmospheric Boundary Layer. J Braz. Soc. Mech. Sci. Eng. 45, 84 (2023).

DOI: 10.1007/s40430-022-03992-z

Google Scholar

[26] B.E. Launder, D.B. Spalding, The Numerical Computation of Turbulent Flows, Comp. Meth. App. Mech. Eng., 3 (1974), 269-289.

DOI: 10.1016/0045-7825(74)90029-2

Google Scholar

[27] D.L. Savicki, A.Goulart, G.Z. Becker, A simplified k- e Turbulence Model, J. Braz. Soc. Mech. Sci. Eng. 43, 384 (2021).

DOI: 10.1007/s40430-021-03084-4

Google Scholar

[28] S.Younoussi and A.Ettaouil, Calibration method of the k-w SST Turbulence Model for Wind Turbine Performance Prediction near stall Condition, Heliyon, 10 (1), e24048 (2024), ISSN : 2405-8440.

DOI: 10.1016/j.heliyon.2024.e24048

Google Scholar

[29] F.R. Menter, Zonal two-equation k-w turbulence model for aerodynamic flows, AIAA Paper 1993-2906 (1993).

DOI: 10.2514/6.1993-2906

Google Scholar

[30] F.R. Menter, M. Kuntz, R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, Turbulence, Heat and Mass Transfer 4, ed: K. Hanjalic, Y. Nagano, and M. Tummers, Begell House, Inc., (2003), 625–632.

Google Scholar

[31] F.R. Menter, J.C. Ferreira, B. Konno, The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions In Gas Turbines, Proc. of the Int. Gas Turb. Congress 2003, Tokyo, November 2-7 (2003).

Google Scholar

[32] J.P. Van Doormaal and G.D. Raithby, Enhancements of the Simple Method for Predicting Incompressible Fluid Flows, Num. Heat Trans., 7 1984, 147-163. https://doi.org/10.1080/ 01495728408961817

DOI: 10.1080/10407798408546946

Google Scholar

[33] Information on Drag Coefficient Data: https://sites.google.com/a/sheffield.ac.uk/all-about-thermo fluids/gro/drag?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F& show Print Dialog=1, Dept. of Mech. Engng., Univ. of Sheffield, (2019), U.K. Last accessed on 01/SEP/2023.

Google Scholar