Phenomenon of Radiation and Viscous Dissipation on Casson Nanoliquid Flow Past a Moving Melting Surface

Article Preview

Abstract:

A combined effect of thermal radiation and viscous dissipation over a melting moving surface is investigated. Casson liquid model is accounted as working liquid. The Brownian motion and thermophoresis in Buogiorno’s type nanofluid are retained. Numerical solutions are obtained for the reduced ordinary differential equations via RKF 45 method. The pertinent parameters on velocity, temperature and concentration are analyzed through plots and tables. Output demonstrated that higher values of melting, thermal radiation and viscous dissipation are enhanced the temperature. Validation of the present work is made with the existing literature.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 11)

Pages:

33-42

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. Sakiadis, Boundary layer behavior on continuous solid surfaces. II: Theboundary layer on a continuous flat surface, AIChE J., 7(1961), 221-225.

DOI: 10.1002/aic.690070211

Google Scholar

[2] H. Blasius, Grenzschichten in Fl¨ussigkeiten mit kleiner Reibung, Z. Math. Phys., 56, (1908), 1-37.

Google Scholar

[3] N. Bachok,A. Ishak and I. Pop, Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Therm. Sci., 49, (2010), 1663–1668.

DOI: 10.1016/j.ijthermalsci.2010.01.026

Google Scholar

[4] M. Jalil, S. Asghar and S.M. Imran, Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream, Int. J. Heat and Mass Tran., 65, (2013), 73-79.

DOI: 10.1016/j.ijheatmasstransfer.2013.05.049

Google Scholar

[5] J. Sui, L. Zheng. X. Zhang and G. Chen, Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate, , Int. J. Heat and Mass Tran., 85, (2015), 1023-1033.

DOI: 10.1016/j.ijheatmasstransfer.2015.02.014

Google Scholar

[6] G.S. Seth, R. Sharma, and B. Kumbhakar, Heat and mass transfer effects on unsteady MHD natural convection flow of a chemically reactive and radiating fluid through a porous medium past a moving vertical plate with arbitrary ramped temperature, J. Appl. Fluid Mech, 9(1), (2016).

DOI: 10.18869/acadpub.jafm.68.224.23961

Google Scholar

[7] G.K. Ramesh, A.J. Chamkha, B.J. Gireesha, Boundary layer flow past an inclined stationary/moving flat plate with convective boundary condition, Afrika Matematika, 27 (1-2), (2016) 87-95.

DOI: 10.1007/s13370-015-0323-x

Google Scholar

[8] L. Roberts, On the melting of a semi-infinite body of ice placed in a hot stream of air. J of Fluid Mechanics, 4, (1958), 505-528.

DOI: 10.1017/s002211205800063x

Google Scholar

[9] C. Tien and Y.C. Yen, The effect of melting on forced convection heat transfer. J Appl. Meteorol, 4, (1965), 523–527.

DOI: 10.1175/1520-0450(1965)004<0523:teomof>2.0.co;2

Google Scholar

[10] K. Das, Radiation and melting effects on MHD boundary layer flow over a moving surface. Ain Shams Eng. J., 5, (2014), 1207-1214.

DOI: 10.1016/j.asej.2014.04.008

Google Scholar

[11] B.C. Prasannakumara, G.K. Ramesh and B.J. Gireesha, Melting and Radiation Effects on Stagnation Point Jeffrey Fluid Flow Over a Stretching Sheet in the Presence of Nanoparticles, Journal of Nanofluids 5 (6), (2016) 993-999.

DOI: 10.1166/jon.2016.1285

Google Scholar

[12] T. Hayat, K. Muhammad, M. Farooq and A. Alsaedi, Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface, AIP Advances. 6, (2016), 015214.

DOI: 10.1063/1.4940932

Google Scholar

[13] M. R Krishnamurthy, B.J. Gireesha, B.C. Prasannakumara and RSR Gorla, Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet, Nonlinear Engineering. 5 (3), (2016).

DOI: 10.1515/nleng-2016-0013

Google Scholar

[14] T. Hayat, M. I. Khan, M. Waqas, A. Alsaedi and M. Farooq, Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon-water nanofluid, Comput. Method. Appl. Mech. Eng., 315, (2017), 1011-1024.

DOI: 10.1016/j.cma.2016.11.033

Google Scholar

[15] T. Hayat, M. Tamoor, M.I. Khan and A. Alsaedi, Numerical simulation for nonlinear radiative flow by convective cylinder, Results in Physics, 6, (2016), 1031-1035.

DOI: 10.1016/j.rinp.2016.11.026

Google Scholar

[16] O.D. Makinde and I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. of Molecular liquids, 221, (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[17] T. Hayat, S. Qayyum, A. Alsaedi and S.A. Shehzad, Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection, J. of Molecular Liquids 223, (2016), 969-978.

DOI: 10.1016/j.molliq.2016.08.102

Google Scholar

[18] G.K. Ramesh, B.C. Prasannakumara, B.J. Gireesha, S.A. Shehzad and F.M. Abbasi, Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation, Thermal Science and Engineering Progress 1, (2017).

DOI: 10.1016/j.tsep.2017.02.006

Google Scholar

[19] K. Ganesh Kumar, N.G. Rudraswamy, B.J. Gireesha and M.R. Krishnamurthy, Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating. Nonlinear Engineering, (2017).

DOI: 10.1515/nleng-2017-0014

Google Scholar

[20] M.I. Khan, M. Tamoor, T. Hayat and A. Alsaedi, MHD Boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation, Results in Physics, 7, (2017), 1207–1211.

DOI: 10.1016/j.rinp.2017.03.009

Google Scholar

[21] G.K. Ramesh, K. Ganesh Kumar, S.A. Shehzad and B.J. Gireesha, Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles, Canadian Journal of Physics, 2017 https: /doi. org/10. 1139/cjp-2017-0307.

DOI: 10.1139/cjp-2017-0307

Google Scholar

[22] R. Kumar, S. Sood, M. Sheikholeslami, S.A. Shehzad, Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations, Journal of Colloid and Interface Science (2017).

DOI: 10.1016/j.jcis.2017.05.083

Google Scholar

[23] T. Hayat, S. A. Shehzad, A. Alsaedi, and M. S. Alhothuali, Mixed convection stagnation point flow of Casson fluid with convective boundary conditions, Chinese Physics Letters, 29 (2012) 114704.

DOI: 10.1088/0256-307x/29/11/114704

Google Scholar

[24] C. S. K. Raju, and N. Sandeep, Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface, Alexandria Engineering Journal, 55 (2016) 1115-1126.

DOI: 10.1016/j.aej.2016.03.023

Google Scholar

[25] A. K. A. Hakeem, P. Renuka, N.V. Ganesh, R. Kalaivanan, and B. Ganga, Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer, Journal of Magnetism and Magnetic Materials, 401 (2016).

DOI: 10.1016/j.jmmm.2015.10.026

Google Scholar

[26] Z. Abbas, M. Sheikh, and S.S. Motsa, Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation, Energy, 95 (2016) 12-20.

DOI: 10.1016/j.energy.2015.11.039

Google Scholar

[27] G. K. Ramesh, B.C. Prasannakumara, B.J. Gireesha, and M M. Rashidi, Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and Radiation, Journal of Applied Fluid Mechanics, 9 (2016) 1115-1122.

DOI: 10.18869/acadpub.jafm.68.228.24584

Google Scholar

[28] R. Cortell, Flow and heat transfer in a moving fluid over a movingflat surface, Theor. Comput. Fluid Dyn. 21 (2007) 435–446.

DOI: 10.1007/s00162-007-0056-z

Google Scholar

[29] A. Mushtaq M. Mustafa T. Hayat A. Alsaedi, Boundary layer flow over a moving plate in a flowing fluid considering non-linear radiations, International Journal of Numerical Methods for Heat & Fluid Flow, 26 (2016) 1617-1630.

DOI: 10.1108/hff-12-2014-0365

Google Scholar