Non-Uniform Heat Source/Sink Effect on Liquid Film Flow of Jeffrey Nanofluid over a Stretching Sheet

Article Preview

Abstract:

The heat transfer in nanofluids plays a major role in solar energy, nuclear reactors, aerodynamics, etc. By keeping this in view, in this study, we investigated the flow and heat transfer nature of liquid film flow of ethylene glycol (EG)-Cu nanofluid in the presence of non-uniform heat source/sink. We considered the Jeffrey fluid model to investigate the flow and heat transfer behavior. The governing equations are transformed as ordinary differential equations with the aid of similarity variables. Numerical results are carried out by employing bvp5c Matlab package. The influence of pertinent parameters on velocity and temperature profiles along with the reduced Nusselt number is discussed with the help of graphs and tabular results. It is observed that the rising value of the non-uniform heat source/sink parameter acts like heat generators and regulates the thermal field. Rising the film thickness enhances the heat transfer rate.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 11)

Pages:

72-83

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Afrand, N. Sina, H. Teimouri, Ali Mazaheri, M.R. Safaei, M.H. Esfe, J. Kamali, D. Toghraie, Effect of Magnetic Field on Free Convection in Inclined Cylindrical Annulus Containing Molten Potassium, International Journal of Applied Mechanics, 7 (4), 1550052 (16 pages), (2015).

DOI: 10.1142/s1758825115500520

Google Scholar

[2] M. R. Safaei , G. Ahmadi, M. S. Goodarzi, A. Kamyar,  S. N. Kazi, Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate, Fluids, 1(4) 31 (2016) 1-13.

DOI: 10.3390/fluids1040031

Google Scholar

[3] N. Sandeep, A. Malvandi, Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles, Advanced Powder Technology, 27 (2016) 2448-2456.

DOI: 10.1016/j.apt.2016.08.023

Google Scholar

[4] M. Jayachandra Babu, N. Sandeep, Three-dimensional MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects, Advanced Powder Technology, 27 (2016) 2039-(2050).

DOI: 10.1016/j.apt.2016.07.013

Google Scholar

[5] I.L. Animasaun, N. Sandeep, Buoyancy induced model for the flow of 36nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity, Powder Technology, 301(2016) 858-867.

DOI: 10.1016/j.powtec.2016.07.023

Google Scholar

[6] T. Hayat, S. A. Shehzad, A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. – Engl. Ed., 33 (10) (2012) 1301-1312.

DOI: 10.1007/s10483-012-1623-6

Google Scholar

[7] S. Nadeem, N.S. Akbar, Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD, Journal of the Taiwan Institute of Chemical Engineers. 42 (2011) 58–66.

DOI: 10.1016/j.jtice.2010.03.006

Google Scholar

[8] S. Nadeem, R.L. Haq, N.S. Akbar, Z.H. Khan, MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alexandria Engineering Journal 52 (2013) 577-582.

DOI: 10.1016/j.aej.2013.08.005

Google Scholar

[9] R.L. Haq, S. Nadeem, Z.H. Khan, T.G. Okedayo, Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet, Central European Journal of Physics 12(12) (2014) 862-871.

DOI: 10.2478/s11534-014-0522-3

Google Scholar

[10] N. Sandeep, Effect of Aligned Magnetic field on liquid thin film flow of magnetic-nanofluid embedded with graphene nanoparticles, Advanced Powder Technology, 28 (2017) 865–875.

DOI: 10.1016/j.apt.2016.12.012

Google Scholar

[11] P. Mohan Krishna, N. Sandeep, Ram Prakash Sharma, Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects, European Physical Journal Plus, 2017, 132: 202.

DOI: 10.1140/epjp/i2017-11469-9

Google Scholar

[12] N. Sandeep, C. Sulochana, I.L. Animasaun, Stagnation-point flow of a Jeffrey nano fluid over a stretching surface with induced magnetic field and chemical reaction, Int.J. Eng. Research in Afrika, 20 (2016) 93-111.

DOI: 10.4028/www.scientific.net/jera.20.93

Google Scholar

[13] O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int. J. Thermal Sci. 50 (2011) 1326–1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[14] W.A. Khan, O.D. Makinde, Z.H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, International Journal of Heat and Mass Transfer 96 (2016) 525–534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[15] W.A. Khan, O.D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, International Journal of Thermal Sciences 81 (2014) 118-124.

DOI: 10.1016/j.ijthermalsci.2014.03.009

Google Scholar

[16] W.N. Mutuku, O.D. Makinde, Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms, Computers & Fluids 95 (2014) 88-97.

DOI: 10.1016/j.compfluid.2014.02.026

Google Scholar

[17] O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[18] A.J. Chamkha, Aly AM. MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. Chem Eng Comm 2011; 198: 425-41.

DOI: 10.1080/00986445.2010.520232

Google Scholar

[19] A.J. Chamkha, Khaled ARA. Similarity solutions for hydromagnetic mixed convection heat and mass transfer for hiemenz flow through porous media. Int J of Nume Meth for Heat and Fluid Flow 2000; 10: 94-115.

DOI: 10.1108/09615530010306939

Google Scholar

[20] R. Kandasamy, I. Muhaimin, A.K. Rosmila, The performance evaluation of unsteady MHD non-Darcy nanofluid flow over a porous wedge due to renewable (solar) energy, Renew. Energy 64 (2014) 1-9.

DOI: 10.1016/j.renene.2013.10.019

Google Scholar

[21] M.M. Rashidi, M. Ali, N. Feridoonimehr, B. Rostami, M.A. Hossain, Mixed convection heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation, Adv. Mech. Eng. 6 (2014) (2014) 735939.

DOI: 10.1155/2014/735939

Google Scholar

[22] N. Sandeep, V. Sugunamma. Radiation and inclined magnetic field effects on unsteady hydromagnetic free convection flow past an impulsively moving vertical plate in a porous medium. J Appl Fluid Mech, 7 (2014) 275–286.

DOI: 10.36884/jafm.7.02.19431

Google Scholar

[23] M. Gnaneswara Reddy, N. Sandeep, Computational modelling and analysis of heat and mass transfer in MHD flow past the upper part of a paraboloid of revolution, European Physical Journal Plus, 132: 222, (2017).

DOI: 10.1140/epjp/i2017-11483-y

Google Scholar

[24] N. Sandeep, A.J. Chamkha, I.L. Animasaun, Numerical exploration of magnetohydrodynamic nanofluid flow suspended with magnetite nanoparticles, J Braz. Soc. Mech. Sci. Eng. DOI 10. 1007/s40430-017-0866-x, (2017).

DOI: 10.1007/s40430-017-0866-x

Google Scholar

[25] M. Jayachandra Babu, N. Sandeep, UCM flow across a melting surface in the presence of double stratification and cross-diffusion effects, Journal of Molecular Liquids, 232, 27-35, (2017).

DOI: 10.1016/j.molliq.2017.02.063

Google Scholar

[26] C. Sulochana, S.P. Samrat, N. Sandeep, Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating, Int. J. Mechanical Sciences, 128-129 (2017) 326-331.

DOI: 10.1016/j.ijmecsci.2017.05.006

Google Scholar