[1]
B.C. Sakiadis, Boundary layer behaviors on continuous solid surface, AIChE, Vol. 7(2), (1961) p.221–225.
DOI: 10.1002/aic.690070211
Google Scholar
[2]
L.J. Crane, Flow past a stretching plate, Z Angew Math Phys, Vol. 21, (1970) p.645–647.
Google Scholar
[3]
S. Sheridan, T. Mahmood and I. Pop, Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet, Int. J. Appl. Mech. Eng, Vol. 11(3), (2006) p.647–54.
Google Scholar
[4]
O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences, Vol. 109, 159-171, (2016).
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[5]
P. Carragher, LJ. Crane, Heat transfer on continuous stretching surface. ZAMM; Vol. 62, (1982) p.564–565.
DOI: 10.1002/zamm.19820621009
Google Scholar
[6]
M. Gnaneswara Reddy, Heat and mass transfer on magneto hydrodynamic peristaltic flow in a porous medium with partial slip, Alexandria Engineering Journal Vol. 55, (2016) p.1225–1234.
DOI: 10.1016/j.aej.2016.04.009
Google Scholar
[7]
S. A. Shehzad, M. Waqas, A. Alsaedi, T. Hayat, Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with convective boundary condition , Journal of Applied Fluid Mechanics, Vol. 9 (3) (2016) pp.1437-1445.
DOI: 10.18869/acadpub.jafm.68.228.24172
Google Scholar
[8]
M. Khan, M. Azam and AliSaleh Alshomrani, Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge, International Journal of Heat and Mass Transfer, Vol. 110 (2017) p.437–446.
DOI: 10.1016/j.ijheatmasstransfer.2017.03.037
Google Scholar
[9]
M. Khan, M. Azam, Unsteady boundary layer flow of Carreau fluid over a permeable stretching surface, Results in Physics, Vol 6, (2016) p.1168–1174.
DOI: 10.1016/j.rinp.2016.11.035
Google Scholar
[10]
M. Khan, M. Azam, A.S. Alshomrani, On unsteady heat and mass transfer in Carreau nanofluid flow over expanding or contracting cylinder, Journal of Molecular Liquids, Vol 231, (2017) p.474–484.
DOI: 10.1016/j.molliq.2017.02.033
Google Scholar
[11]
M. Gnaneswara Reddy, Chemically reactive species and radiation effects on MHD convective flow past a moving vertical cylinder, Ain Shams Engineering Journal, Vol. 4, (2013) pp.879-88.
DOI: 10.1016/j.asej.2013.04.003
Google Scholar
[12]
M. Gnaneswara Reddy, O.D. Makinde, Magnetohydrodynamic peristaltic transport of jeffrey nanofluid in an asymmetric channel, Journal of Molecular Liquids, Vol. 223, (2016) pp.1242-1248.
DOI: 10.1016/j.molliq.2016.09.080
Google Scholar
[13]
M Gnaneswara Reddy, Velocity and thermal slip effects on MHD third order blood flow in an irregular channel though a porous medium with homogenious /heterogeneous reactions, Nonlinear Engineering, (2017).
DOI: 10.1515/nleng-2017-0008
Google Scholar
[14]
K. Vajravelu, A. Hadjinicolaou, Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int.J. Eng. Sci., Vol. 35, (1997) pp.1237-1244.
DOI: 10.1016/s0020-7225(97)00031-1
Google Scholar
[15]
A. Jasmine Benazir, R. Sivaraj, O. D. Makinde: Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink. International Journal of Engineering Research in Africa, Vol. 21, 69-83, (2016).
DOI: 10.4028/www.scientific.net/jera.21.69
Google Scholar
[16]
I. Pop, T.Y. Na, A note on MHD flow over a stretching permeable surface, Mech. Res Commun, Vol. 25, (1998) p.263–269.
DOI: 10.1016/s0093-6413(98)00037-8
Google Scholar
[17]
A. Ishak, R. Nazar, I. Pop, Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet, Heat Mass Transfer, Vol. 44, (2008) p.921.
DOI: 10.1007/s00231-007-0322-z
Google Scholar
[18]
V.M. Soundalgekar, S.K. Gupta, N. S Birajdar, Effects of mass transfer and free effects on MHD Stokes problem for a vertical plate, Nucl. Eng. Des, Vol. 53, (1979) pp.309-346.
DOI: 10.1016/0029-5493(79)90060-8
Google Scholar
[19]
I. Ullah, S. Shafie, O. D. Makinde, I. Khan: Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chemical Engineering Science, Vol. 172, 694–706, (2017).
DOI: 10.1016/j.ces.2017.07.011
Google Scholar
[20]
M. Gnaneswara Reddy, Unsteady heat and mass transfer MHD flow of a chemically reacting fluid past an impulsively started vertical plate with radiation, J. Eng phy, Vol. 87(5), (2014) pp.1233-1240.
DOI: 10.1007/s10891-014-1125-y
Google Scholar
[21]
O. D. Makinde, M. Gnaneswara Reddy, K. Venugopal Reddy, Effects of thermal radiation on MHD peristaltic motion of Walters-B fluid with heat source and slip conditions, Journal of Applied Fluid Mechanics, Vol. 10, No. 4, 1105-1112, (2017).
DOI: 10.18869/acadpub.jafm.73.241.27082
Google Scholar
[22]
W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 230 (5), 345-354, (2016).
DOI: 10.1177/0954408914550357
Google Scholar
[23]
M. Gnaneswara Reddy, Influence of magneto hydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet, J. Sci. Res, Vol. 6 (2), (2014), pp.257-272.
DOI: 10.3329/jsr.v6i2.17233
Google Scholar
[24]
M. Gnaneswara Reddy, Influence of thermal radiation viscous dissipation and hall current on MHD convection flow over a stretched vertical flat plate, Ain Shams Engineering Journal, Vol. 5, (2014) p.169–175.
DOI: 10.1016/j.asej.2013.08.003
Google Scholar
[25]
M. Gnaneswara Reddy, Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating, Eur Phys J Plus, Vol. 129, (2014) 41.
DOI: 10.1140/epjp/i2014-14041-3
Google Scholar
[26]
M. Gnaneswara Reddy, N. Bhaskar Reddy, Mass transfer and heat generation effects on MHD free convection flow past an inclined vertical surface in a porous medium, Journal of Applied Fluid Mechanics, Vol. 4(2), (2011) pp.7-11.
DOI: 10.36884/jafm.4.02.11911
Google Scholar
[27]
T. Hayat, M. Waqas, M. Ijaz Khan, A. Alsaedi, Impacts of constructive and destructive chemical reactions in MHD flow of Jeffrey liquid due to nonlinear radially stretched surface, Journal of Molecular Liquids, Vol 225, ( 2017) p.302–310.
DOI: 10.1016/j.molliq.2016.11.023
Google Scholar
[28]
M. Khan, Muhammad Azam, Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow, Journal of Molecular Liquids, Vol. 225, (2017), p.554–562.
DOI: 10.1016/j.molliq.2016.11.107
Google Scholar
[29]
N. Sandeep, M. Gnaneswara Reddy, Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries, Journal of Molecular Liquids, Vol. 225, (2017) p.87–94.
DOI: 10.1016/j.molliq.2016.11.026
Google Scholar
[30]
W.M. Kays, M.E. Grawford, Convection heat and mass transfer, Pergamon, Oxford, Vol. 2, (1980) pp.141-143.
Google Scholar
[31]
S. Sivasankaran, M. Bhuvaneswari, P. Kandaswamy, E.K. Ramasami, Lie group analysis of natural convection heat and mass transfer in an inclined surface, Nonlinear Analysis Modeling and Control, Vol. 11 (1), (2006) p.201–212.
DOI: 10.15388/na.2006.11.2.14759
Google Scholar
[32]
A.P. Van den berg, E.S.G. Rainey, D.A. Yuen, The combined influences of variable thermal conductivity temperature- and pressure-dependent viscosity and core–mantle coupling on thermal evolution, Physics of the Earth and Planetary Interiors, Vol. 149, (2005).
DOI: 10.1016/j.pepi.2004.10.008
Google Scholar
[33]
M. Salema, B. Rania Fathy, Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation, Chin. Phys. B, Vol. 21 (5), (2012) 054701A.
DOI: 10.1088/1674-1056/21/5/054701
Google Scholar
[34]
A. Subhas, K.V. Prasad, Ali Mahaboob, Buoyancy force and thermal radiation effects in MHD boundary layer viscoelastic flow over continuously moving stretching surface, Int. J. Therm, Sci, Vol. 44, (2005) p.465–476.
DOI: 10.1016/j.ijthermalsci.2004.08.005
Google Scholar
[35]
M. Gnaneswara Reddy, Effects of thermophoresis, viscous dissipation and joule heating on steady MHD heat and mass transfer flow over an inclined radiative isothermal permeable surface with variable thermal conductivity, Int. J. Heat and technology, Vol. 30(1), (2012).
DOI: 10.36884/jafm.7.01.19572
Google Scholar
[36]
M. Waqas, T. Hayat, M. Farooq, S.A. Shehzad, A. Alsaed, Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid, journal of molecular liquids, Vol. 220, (2016) pp.642-648.
DOI: 10.1016/j.molliq.2016.04.086
Google Scholar
[37]
T. Hayat, Asud sadia, M. Mustafa and A. Alsaedi, Boundary layer flow of Carreau fluid over convectively heated stretching sheet, Applied Mathematics and computers, Vol. 246, (2014) pp.12-22.
DOI: 10.1016/j.amc.2014.07.083
Google Scholar
[38]
M. Khan, A. S. Hasim, M. Hussain, M. Azam, Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non –linear radiation , Journal of magnetism and magnetic materials, Vol. 412, (2016) pp.63-68.
DOI: 10.1016/j.jmmm.2016.03.077
Google Scholar
[39]
F. Montel, Importance dela thermo diffusion en exploitation et production pétrolières Entropie, Vol. 86, (1994) p.184–185.
Google Scholar
[40]
S. Roseland, Astrophysik and atom-Theoretische grundlagen, springer ver-lag, Berlin, (1931) pp.41-44.
Google Scholar
[41]
A. Shahzad, R. Ali, Approximate analytic solution for magneto-hydrodynamic flow of a Non-Newtonian fluid over a vertical stretching sheet, Canadian J Appl. Sci, Vol. 2(1), (2012) pp.202-215.
Google Scholar
[42]
T. Hayat, Muhammad Ijaz Khan, Muhammad Waqas and Ahmed Alsaedi, On Cattaneo–Christov heat flux in the flow of variable thermal conductivity Eyring–Powell fluid , Results in Physics, Vol 7, (2016) pp.446-450.
DOI: 10.1016/j.rinp.2016.12.034
Google Scholar
[43]
M. Khan, A.S. Hashim, Effects of multiple slip on flow of magneto-Carreau fluid along wedge with chemically reactive species, Neural Computing and Applications, (2016) p.1–13.
DOI: 10.1007/s00521-016-2825-3
Google Scholar
[44]
T. Hayat, M. I. Khan, M. Waqas, A. Alsaedi, Mathematical modeling of non-Newtonian fluid with chemical aspects, A new formulation and results by numerical technique. Colloids, Vol. 518, (2017) pp.263-272.
DOI: 10.1016/j.colsurfa.2017.01.007
Google Scholar