[1]
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, ASME FED 231/MD, 66 (1995) 99-105.
Google Scholar
[2]
J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: Komarneni, S., Parker, J.C. and Wollenberger, H.J. (Eds. ), Nanophase and Nano-composite Materials II, Materials Research Society, (Pittsburgh) (1997).
Google Scholar
[3]
S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001) 2252-2254.
DOI: 10.1063/1.1408272
Google Scholar
[4]
P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanism of heat flow is suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transf., 42 (2002) 855-863.
DOI: 10.1016/s0017-9310(01)00175-2
Google Scholar
[5]
J. Buongiorno, Convective transport in nanofluids, J. Heat Transf., 128 (2006) 240-250.
Google Scholar
[6]
S.P. Jang, S.U.S. Choi, Effects of various parameters on nanofluid thermal conductivity, J. Heat Transf., 129 (2007) 617-623.
DOI: 10.1115/1.2712475
Google Scholar
[7]
W. Daungthongsuk, S. Wongwises, A critical review of convective heat transfer nanofluids, Rene. & Sust. Energy Reviews, 11 (2007) 797-817.
DOI: 10.1016/j.rser.2005.06.005
Google Scholar
[8]
M.M. Rashidi, E. Momoniat, M. Ferdows, A. Basiriparsa, Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media, Math Prob. Engng., (2014) (Article ID 239082).
DOI: 10.1155/2014/239082
Google Scholar
[9]
F. Garoosi, G. Bagheri, M.M. Rashidi, Two phase simulation of natural convection and mixed convection of the nanofluid in a square cavity, Powder Tech., 275 (2015) 239-256.
DOI: 10.1016/j.powtec.2015.02.013
Google Scholar
[10]
F. Garoosi, B. Rohani, M.M. Rashidi, Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating, Powder Tech., 275 (2015) 304-321.
DOI: 10.1016/j.powtec.2015.02.015
Google Scholar
[11]
A. Malvandi, D.D. Ganji, Effects of nanoparticle migration on force convection of alumina/water nanofluid in a cooled parallel-plate channel, Adv. Powder Tech., 25 (2014) 1369–1375.
DOI: 10.1016/j.apt.2014.03.017
Google Scholar
[12]
A. Malvandi, D.D. Ganji, Mixed convection of alumina–water nanofluid inside a concentric annulus considering nanoparticle migration, Particuology, 24 (2016) 113-122.
DOI: 10.1016/j.partic.2014.12.017
Google Scholar
[13]
A.J. Chamkha, A.M. Aly, MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects, Chem. Engng. Commun., 198 (2011) 425-441.
DOI: 10.1080/00986445.2010.520232
Google Scholar
[14]
M. Sheikholeslami, M. Hatami, M. D.D. Ganji, Analytical investigation of MHD nanofluid flow in a semi-porous channel, Powder Tech., 246 (2013) 327-336.
DOI: 10.1016/j.powtec.2013.05.030
Google Scholar
[15]
M. Sheikholeslami, M. Gorji-Bandpy, R. Ellahi, A. Zeeshan, Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces, J. Magnetism Magnetic Materials, 369 (2014) 69-80.
DOI: 10.1016/j.jmmm.2014.06.017
Google Scholar
[16]
M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, MHD free convection in an eccentric semi-annulus filled with nanofluid, J. Taiwan Inst. Chem. Engineers, 45 (2014) 1204-1216.
DOI: 10.1016/j.jtice.2014.03.010
Google Scholar
[17]
M. Sheikholeslami, D.D. Ganji, Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Scientia Iranica B, 21 (2014) 203-212.
Google Scholar
[18]
R. Nandkeolyar, P.K. Kameswaran, S. Shaw, P. Sibanda, Heat transfer on nanofluid flow with homogeneous-heterogeneous reactions and internal heat generation, J. Heat Transf., 136 (2014) 122001-1.
DOI: 10.1115/1.4028644
Google Scholar
[19]
P.S. Reddy, A.J. Chamkha, Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids, Alexandria Eng. J., 55 (2016) 331-341.
DOI: 10.1016/j.aej.2016.01.027
Google Scholar
[20]
A. Mahmoudi, I. Mejri, M.A. Abbassi, A. Omri, Analysis of MHD natural convection in a nanofluid-filled open cavity with non uniform boundary condition in the presence of uniform heat generation/absorption, Powder Tech., 269 (2015) 275-289.
DOI: 10.1016/j.powtec.2014.09.022
Google Scholar
[21]
T. Hayat, T. Muhammad, A. Qayyum, A. Alsaedi, M. Mustafa, On squeezing flow of nanofluid in the presence of magnetic field effects, J. Molecular Liquids, 213 (2016) 179-185.
DOI: 10.1016/j.molliq.2015.11.003
Google Scholar
[22]
R. Dhanai, P. Rana, L. Kumar, MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno's model, Powder Tech., 288 (2016) 140-150.
DOI: 10.1016/j.powtec.2015.11.004
Google Scholar
[23]
M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transf., 59 (2013) 167-171.
DOI: 10.1016/j.ijheatmasstransfer.2012.12.009
Google Scholar
[24]
M.M. Rashidi, N.V. Ganesh, A.K. Abdul-Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, J. Molecular Liquids, 198 (2014b) 234-238.
DOI: 10.1016/j.molliq.2014.06.037
Google Scholar
[25]
R.U. Haq, S. Nadeem, Z.H. Khan, N.S. Akbar, Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet, Physica E, 65 (2015) 17-23.
DOI: 10.1016/j.physe.2014.07.013
Google Scholar
[26]
S. Das, R.N. Jana, Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate, Alexandria Eng. J., 54 (2015) 55-64.
DOI: 10.1016/j.aej.2015.01.001
Google Scholar
[27]
M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation, J. Taiwan Inst. Chem. Engineers, 47 (2015) 6-17.
DOI: 10.1016/j.jtice.2014.09.026
Google Scholar
[28]
S. Das, R.N. Jana, O.D. Makinde, Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation, Alexandria Eng. J., 55 (2016) 253-262.
DOI: 10.1016/j.aej.2015.10.013
Google Scholar
[29]
P. Chandran, N.C. Sacheeti, A.K. Singh, Natural convection near a vertical plate with ramped wall temperature, Heat Mass Transf., 41 (2005) 459-464.
DOI: 10.1007/s00231-004-0568-7
Google Scholar
[30]
G.S. Seth, M.S. Ansari, R. Nandkeolyar, MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature, Heat Mass Transf., 47 (2011) 551-561.
DOI: 10.1007/s00231-010-0740-1
Google Scholar
[31]
G.S. Seth, S. Sarkar, S.M. Hussain, G.K. Mahato, Effects of hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature, J. Appl. Fluid Mech., 8 (2015).
DOI: 10.36884/jafm.8.01.20437
Google Scholar
[32]
G.S. Seth, S.M. Hussain, S. Sarkar, Hydromagnetic natural convection flow with radiative heat transfer past an accelerated moving vertical plate with ramped temperature through a porous medium, J. Porous Media, 17(1) (2014a) 67-79.
DOI: 10.1615/jpormedia.v17.i1.50
Google Scholar
[33]
R. Nandkeolyar, G.S. Seth, O.D. Makinde, P. Sibanda, M.S. Ansari, Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation, ASME J. Appl. Mech., 80 (2013).
DOI: 10.1115/1.4023959
Google Scholar
[34]
R. Nandkeolyar, M. Das, MHD free convective radiative flow past a flat plate with ramped temperature in the presence of an inclined magnetic field, Comp. Appl. Math., 34 (2015) 109-123.
DOI: 10.1007/s40314-013-0107-6
Google Scholar
[35]
A. Khalid, I. Khan, S. Shafie, Exact solutions for free convection flow of nanofluids with ramped wall temperature, The Europ. Physical J. – Plus, 130 (2015) 57.
DOI: 10.1140/epjp/i2015-15057-9
Google Scholar
[36]
E.M. Aboeldahab, E.M.E. Elbarbary, Hall current effect on magnetohydrodynamic free convection flow past a semi-infinite vertical plate with mass transfer, Int. J. Eng. Sci., 39 (2001) 1641-1652.
DOI: 10.1016/s0020-7225(01)00020-9
Google Scholar
[37]
G.S. Seth, R. Sharma, S.M. Hussain, S. Sarkar, Hall effects on unsteady MHD natural convection flow of a heat absorbing and radiating fluid past an accelerated moving vertical plate with ramped temperature, Int. J. Energy & Tech., 6 (2014b) 1-13.
DOI: 10.1016/j.joems.2015.07.007
Google Scholar
[38]
M.A.A. Hamad, I. Pop, Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid, Heat Mass Transf., 47 (2011) 1517-1524.
DOI: 10.1007/s00231-011-0816-6
Google Scholar
[39]
K. Das, Flow and heat transfer characteristics of nanofluids in a rotating frame, Alexandria Eng. J., 53 (2014) 757-766.
DOI: 10.1016/j.aej.2014.04.003
Google Scholar
[40]
S. Das, R.N. Jana, A.J. Chamkha, Magnetohydrodynamic free convective boundary layer flow of nanofluids past a porous plate in a rotating frame, J. Nanofluids, 4 (2015) 176-186.
DOI: 10.1166/jon.2015.1140
Google Scholar
[41]
S.M. Hussain, J. Jain, G.S. Seth, M.M. Rashidi, Free convective heat transfer with Hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system, J. Magnetism Magnetic Materials, 422 (2017) 112–123.
DOI: 10.1016/j.jmmm.2016.08.081
Google Scholar
[42]
H.H. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008) 1326-1336.
DOI: 10.1016/j.ijheatfluidflow.2008.04.009
Google Scholar