Analysis of Radiative Magneto-Nanofluid over an Accelerated Plate in a Rotating Medium with Hall Effects

Article Preview

Abstract:

Present research work has been undertaken to analyze the effects of Hall current on natural convective flow of radiative, incompressible, viscous and electrically conducting magneto-nanofluid over a uniformly accelerated moving vertical ramped temperature plate in a rotating medium. Three types of water based nanofluids containing the nanoparticles of alumina, copper and titanium oxide have been accounted. The mathematical model of the problem has been presented using the nanoparticle volume fraction model. The Laplace transform technique has been employed to solve the mathematical model. The closed-form expressions of nanofluid velocity, temperature, shear stress and rate of heat transfer at the plate have been obtained for both the conditions of ramped temperature and isothermal plates. The effects of various physical parameters on the nanofluid velocity due to primary and secondary flows and temperature have been exemplified using various graphs whereas, the numerical values of shear stress and rate of heat transfer at the plate have been reported in tabular form for different values of physical parameters of interest. Moreover, the numerical results have been compared for the natural convective flow near ramped temperature plate with the corresponding flow near isothermal plate. It has been noted that both the nanofluid velocity and temperature are higher in magnitude in the case of isothermal plate than that of ramped temperature plate. The results of present research work have been validated with the earlier published work.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 11)

Pages:

129-145

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, ASME FED 231/MD, 66 (1995) 99-105.

Google Scholar

[2] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: Komarneni, S., Parker, J.C. and Wollenberger, H.J. (Eds. ), Nanophase and Nano-composite Materials II, Materials Research Society, (Pittsburgh) (1997).

Google Scholar

[3] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001) 2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[4] P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanism of heat flow is suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transf., 42 (2002) 855-863.

DOI: 10.1016/s0017-9310(01)00175-2

Google Scholar

[5] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf., 128 (2006) 240-250.

Google Scholar

[6] S.P. Jang, S.U.S. Choi, Effects of various parameters on nanofluid thermal conductivity, J. Heat Transf., 129 (2007) 617-623.

DOI: 10.1115/1.2712475

Google Scholar

[7] W. Daungthongsuk, S. Wongwises, A critical review of convective heat transfer nanofluids, Rene. & Sust. Energy Reviews, 11 (2007) 797-817.

DOI: 10.1016/j.rser.2005.06.005

Google Scholar

[8] M.M. Rashidi, E. Momoniat, M. Ferdows, A. Basiriparsa, Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media, Math Prob. Engng., (2014) (Article ID 239082).

DOI: 10.1155/2014/239082

Google Scholar

[9] F. Garoosi, G. Bagheri, M.M. Rashidi, Two phase simulation of natural convection and mixed convection of the nanofluid in a square cavity, Powder Tech., 275 (2015) 239-256.

DOI: 10.1016/j.powtec.2015.02.013

Google Scholar

[10] F. Garoosi, B. Rohani, M.M. Rashidi, Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating, Powder Tech., 275 (2015) 304-321.

DOI: 10.1016/j.powtec.2015.02.015

Google Scholar

[11] A. Malvandi, D.D. Ganji, Effects of nanoparticle migration on force convection of alumina/water nanofluid in a cooled parallel-plate channel, Adv. Powder Tech., 25 (2014) 1369–1375.

DOI: 10.1016/j.apt.2014.03.017

Google Scholar

[12] A. Malvandi, D.D. Ganji, Mixed convection of alumina–water nanofluid inside a concentric annulus considering nanoparticle migration, Particuology, 24 (2016) 113-122.

DOI: 10.1016/j.partic.2014.12.017

Google Scholar

[13] A.J. Chamkha, A.M. Aly, MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects, Chem. Engng. Commun., 198 (2011) 425-441.

DOI: 10.1080/00986445.2010.520232

Google Scholar

[14] M. Sheikholeslami, M. Hatami, M. D.D. Ganji, Analytical investigation of MHD nanofluid flow in a semi-porous channel, Powder Tech., 246 (2013) 327-336.

DOI: 10.1016/j.powtec.2013.05.030

Google Scholar

[15] M. Sheikholeslami, M. Gorji-Bandpy, R. Ellahi, A. Zeeshan, Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces, J. Magnetism Magnetic Materials, 369 (2014) 69-80.

DOI: 10.1016/j.jmmm.2014.06.017

Google Scholar

[16] M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, MHD free convection in an eccentric semi-annulus filled with nanofluid, J. Taiwan Inst. Chem. Engineers, 45 (2014) 1204-1216.

DOI: 10.1016/j.jtice.2014.03.010

Google Scholar

[17] M. Sheikholeslami, D.D. Ganji, Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Scientia Iranica B, 21 (2014) 203-212.

Google Scholar

[18] R. Nandkeolyar, P.K. Kameswaran, S. Shaw, P. Sibanda, Heat transfer on nanofluid flow with homogeneous-heterogeneous reactions and internal heat generation, J. Heat Transf., 136 (2014) 122001-1.

DOI: 10.1115/1.4028644

Google Scholar

[19] P.S. Reddy, A.J. Chamkha, Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids, Alexandria Eng. J., 55 (2016) 331-341.

DOI: 10.1016/j.aej.2016.01.027

Google Scholar

[20] A. Mahmoudi, I. Mejri, M.A. Abbassi, A. Omri, Analysis of MHD natural convection in a nanofluid-filled open cavity with non uniform boundary condition in the presence of uniform heat generation/absorption, Powder Tech., 269 (2015) 275-289.

DOI: 10.1016/j.powtec.2014.09.022

Google Scholar

[21] T. Hayat, T. Muhammad, A. Qayyum, A. Alsaedi, M. Mustafa, On squeezing flow of nanofluid in the presence of magnetic field effects, J. Molecular Liquids, 213 (2016) 179-185.

DOI: 10.1016/j.molliq.2015.11.003

Google Scholar

[22] R. Dhanai, P. Rana, L. Kumar, MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno's model, Powder Tech., 288 (2016) 140-150.

DOI: 10.1016/j.powtec.2015.11.004

Google Scholar

[23] M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transf., 59 (2013) 167-171.

DOI: 10.1016/j.ijheatmasstransfer.2012.12.009

Google Scholar

[24] M.M. Rashidi, N.V. Ganesh, A.K. Abdul-Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, J. Molecular Liquids, 198 (2014b) 234-238.

DOI: 10.1016/j.molliq.2014.06.037

Google Scholar

[25] R.U. Haq, S. Nadeem, Z.H. Khan, N.S. Akbar, Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet, Physica E, 65 (2015) 17-23.

DOI: 10.1016/j.physe.2014.07.013

Google Scholar

[26] S. Das, R.N. Jana, Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate, Alexandria Eng. J., 54 (2015) 55-64.

DOI: 10.1016/j.aej.2015.01.001

Google Scholar

[27] M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation, J. Taiwan Inst. Chem. Engineers, 47 (2015) 6-17.

DOI: 10.1016/j.jtice.2014.09.026

Google Scholar

[28] S. Das, R.N. Jana, O.D. Makinde, Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation, Alexandria Eng. J., 55 (2016) 253-262.

DOI: 10.1016/j.aej.2015.10.013

Google Scholar

[29] P. Chandran, N.C. Sacheeti, A.K. Singh, Natural convection near a vertical plate with ramped wall temperature, Heat Mass Transf., 41 (2005) 459-464.

DOI: 10.1007/s00231-004-0568-7

Google Scholar

[30] G.S. Seth, M.S. Ansari, R. Nandkeolyar, MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature, Heat Mass Transf., 47 (2011) 551-561.

DOI: 10.1007/s00231-010-0740-1

Google Scholar

[31] G.S. Seth, S. Sarkar, S.M. Hussain, G.K. Mahato, Effects of hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature, J. Appl. Fluid Mech., 8 (2015).

DOI: 10.36884/jafm.8.01.20437

Google Scholar

[32] G.S. Seth, S.M. Hussain, S. Sarkar, Hydromagnetic natural convection flow with radiative heat transfer past an accelerated moving vertical plate with ramped temperature through a porous medium, J. Porous Media, 17(1) (2014a) 67-79.

DOI: 10.1615/jpormedia.v17.i1.50

Google Scholar

[33] R. Nandkeolyar, G.S. Seth, O.D. Makinde, P. Sibanda, M.S. Ansari, Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation, ASME J. Appl. Mech., 80 (2013).

DOI: 10.1115/1.4023959

Google Scholar

[34] R. Nandkeolyar, M. Das, MHD free convective radiative flow past a flat plate with ramped temperature in the presence of an inclined magnetic field, Comp. Appl. Math., 34 (2015) 109-123.

DOI: 10.1007/s40314-013-0107-6

Google Scholar

[35] A. Khalid, I. Khan, S. Shafie, Exact solutions for free convection flow of nanofluids with ramped wall temperature, The Europ. Physical J. – Plus, 130 (2015) 57.

DOI: 10.1140/epjp/i2015-15057-9

Google Scholar

[36] E.M. Aboeldahab, E.M.E. Elbarbary, Hall current effect on magnetohydrodynamic free convection flow past a semi-infinite vertical plate with mass transfer, Int. J. Eng. Sci., 39 (2001) 1641-1652.

DOI: 10.1016/s0020-7225(01)00020-9

Google Scholar

[37] G.S. Seth, R. Sharma, S.M. Hussain, S. Sarkar, Hall effects on unsteady MHD natural convection flow of a heat absorbing and radiating fluid past an accelerated moving vertical plate with ramped temperature, Int. J. Energy & Tech., 6 (2014b) 1-13.

DOI: 10.1016/j.joems.2015.07.007

Google Scholar

[38] M.A.A. Hamad, I. Pop, Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid, Heat Mass Transf., 47 (2011) 1517-1524.

DOI: 10.1007/s00231-011-0816-6

Google Scholar

[39] K. Das, Flow and heat transfer characteristics of nanofluids in a rotating frame, Alexandria Eng. J., 53 (2014) 757-766.

DOI: 10.1016/j.aej.2014.04.003

Google Scholar

[40] S. Das, R.N. Jana, A.J. Chamkha, Magnetohydrodynamic free convective boundary layer flow of nanofluids past a porous plate in a rotating frame, J. Nanofluids, 4 (2015) 176-186.

DOI: 10.1166/jon.2015.1140

Google Scholar

[41] S.M. Hussain, J. Jain, G.S. Seth, M.M. Rashidi, Free convective heat transfer with Hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system, J. Magnetism Magnetic Materials, 422 (2017) 112–123.

DOI: 10.1016/j.jmmm.2016.08.081

Google Scholar

[42] H.H. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008) 1326-1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar