[1]
L.J. Crane, Flow past a stretching sheet, ZAMP, 21 (1970) 645-647.
Google Scholar
[2]
B.K. Dutta, P. Roy, A.S. Gupta, Temperature field in the flow over a stretching sheet with uniform heat flux, Int. Comm. Heat Mass Transf., 12 (1985) 89-94.
DOI: 10.1016/0735-1933(85)90010-7
Google Scholar
[3]
C.K. Chen, M. Char, Heat transfer of a continuous, stretching surface with suction or blowing, J. Math. Analysis Applic., 135 (1988) 568-580.
DOI: 10.1016/0022-247x(88)90172-2
Google Scholar
[4]
E. Magyari, B. Keller, Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J. Phys. D: Appl. Phys., 32 (1999) 577-585.
DOI: 10.1088/0022-3727/32/5/012
Google Scholar
[5]
E.M.A. Elbashbeshy, Heat transfer over an exponentially stretching continuous surface with suction, Arch. Mech., 53 (2001) 643-651.
Google Scholar
[6]
B. Sahoo, S. Poncet, Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition, Int. J. Heat Mass Transf., 54 (2011) 5010- 5019.
DOI: 10.1016/j.ijheatmasstransfer.2011.07.015
Google Scholar
[7]
T. Hayat, S.A. Shehzad, A. Alsaedi, MHD three-dimensional flow by an exponentially stretching surface with convective boundary condition, J. Aerosp. Eng., 27 (2014) 04014011.
DOI: 10.1061/(asce)as.1943-5525.0000360
Google Scholar
[8]
S. Mukhopadhyay, R.S.R. Gorla, Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation, Heat Mass Transf., 48 (2012) 1773-1781.
DOI: 10.1007/s00231-012-1024-8
Google Scholar
[9]
K. Hiemenz, Die Grenzschicht an einem in den gleichformingen Flussigkeits-strom eingetauchten graden Kreiszylinder, Dinglers Polytech. J., 326 (1911) 321-324.
Google Scholar
[10]
C.Y. Wang, Stagnation flow on the surface of a quiescent fluid-an exact solution of the Navier-Stokes equations, Quart. Appl. Math., XLIII (2), (1985) 215-223.
DOI: 10.1090/qam/793530
Google Scholar
[11]
A. Ishak, Y.Y. Lok, I. Pop, Stagnation-point flow over a shrinking sheet in a micropolar fluid, Chem. Eng. Comm., 197 (2010) 1417-1427.
DOI: 10.1080/00986441003626169
Google Scholar
[12]
M.A.A. Mahmoud, S.E. Waheed, MHD stagnation point flow of a micropolar fluid towards a moving surface with radiation, Meccanica, 47 (2012) 1119-1130.
DOI: 10.1007/s11012-011-9498-x
Google Scholar
[13]
M.K. Partha, P.V.S.N. Murthy, G.P. Rajasekhar, Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface, Heat Mass Transf., 41 (2005) 360-366.
DOI: 10.1007/s00231-004-0552-2
Google Scholar
[14]
D. Pal, Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field, Appl. Math. Comput., 217 (2010) 2356-2369.
DOI: 10.1016/j.amc.2010.07.035
Google Scholar
[15]
A. Rehman, S. Nadeem, M.Y. Malik, Boundary layer stagnation-point flow of a third grade fluid over an exponentially stretching sheet, Braz. J. Chem. Eng., 30 (2013) 611-618.
DOI: 10.1590/s0104-66322013000300018
Google Scholar
[16]
K. Bhattacharyya, G.C. Layek, Thermal boundary layer in flow due to an exponentially stretching surface with an exponentially moving free stream, Model. Simulat. Eng., 2014 (2014), Article ID 785049, 9 pages.
DOI: 10.1155/2014/785049
Google Scholar
[17]
R.K. Cramer, S.I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists McGraw-Hill Book Company, New York, (1973).
Google Scholar
[18]
T. Hayat, S. A. Shehzad, A. Alsaedi, MHD Three-Dimensional Flow by an Exponentially Stretching Surfaces with Convective Boundary Condition, J. Aerosp. Eng., 27 (2014) Article ID: 04014011.
DOI: 10.1061/(asce)as.1943-5525.0000360
Google Scholar
[19]
G.S. Seth, R.N. Jana, M.K. Maiti, Unsteady hydromagnetic flow past a porous plate in a rotating medium with time-dependent free stream, Rom. J. Technical Sci. -Appl. Mech., 26 (1981) 383-400.
Google Scholar
[20]
B. Kumbhakar, P.S. Rao, Dissipative boundary layer flow over a nonlinearly stretching sheet in the presence of magnetic field and thermal radiation, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 85 (2015) 117-125.
DOI: 10.1007/s40010-014-0187-8
Google Scholar
[21]
G.W. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, (1965).
Google Scholar