[1]
D.G. Osborne, Incropera, F.P. Laminar, Mixed convection heat transfer for flow between horizontal parallel plates with asymmetric heating, Int. J. Heat Mass Transfer. 28(1) (1985) 207-217.
DOI: 10.1016/0017-9310(85)90023-7
Google Scholar
[2]
D. Srinivasacharya, K. Kaladhar, Mixed Convection Flow of Chemically Reacting Couple Stress Fluid in a Vertical Channel with Soret and Dufour Effects, Int. J. Comput. Methods Eng. Sci. Mech. 15(5) (2014) 413-421.
DOI: 10.1080/15502287.2014.915251
Google Scholar
[3]
S. Das, R.N. Jana, O.D. Makinde, Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids, Engineering Science and Technology an International Journal. 18(2) (2015) 244-255.
DOI: 10.1016/j.jestch.2014.12.009
Google Scholar
[4]
M. Moslehi, M. Saghafian, MHD mixed convection slip flow in a vertical parallel plate microchannel heated at asymmetric and uniform heat flux, J Mech Sci Technol. 29(12) (2015) 5317-5324.
DOI: 10.1007/s12206-015-0739-0
Google Scholar
[5]
A. Barletta, M. Miklavcic, On fully developed mixed convection with viscous dissipation in a vertical channel and its stability, Z. Angew. Math. Mech. 96 (2016) 1457-1466.
DOI: 10.1002/zamm.201500266
Google Scholar
[6]
B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Mixed convection squeezing threedimensional flow in a rotating channel filled with nanofluid, Int. J. Numer. Methods Heat Fluid Flow. 26(5) (2016) 1460-1485.
DOI: 10.1108/hff-03-2015-0087
Google Scholar
[7]
C.L.M.H. Navier, Memoire sur les lois du mouvement des fluides, MemAcad R Sci Paris, 6 (1823) 389-416.
Google Scholar
[8]
O.A. Beg, M.J. Uddin, Rashidi, N. Kavyani, Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects, J. Engin. Thermophys. 23(2) (2014) 79-97.
DOI: 10.1134/s1810232814020015
Google Scholar
[9]
G. Singh, O.D. Makinde, Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, Therm. Sci. 19(1) (2015) 119-128.
DOI: 10.2298/tsci120718110s
Google Scholar
[10]
U. Mishra, G. A. Singh, Study of Mixed Convection Flow over Stretching Cylinder in Presence of Slip Flow and Thermal Jump Boundary Conditions, Int. J. Fluid Mech. 43(4) (2016) 308-318.
DOI: 10.1615/interjfluidmechres.v43.i4.20
Google Scholar
[11]
K. Das, S. Jana, N. Acharya, Slip effects on squeezing flow of nanofluid between two parallel disks, International Journal of Applied Mechanics and Engineering. 21(1) (2016) 5-20.
DOI: 10.1515/ijame-2016-0001
Google Scholar
[12]
S. Das, B.C. Sarkar, R.N. Jana, Hall effect on MHD free convection boundary layer flow past a vertical flat plate, Meccanica. 48(6) (2013) 1387-1398.
DOI: 10.1007/s11012-012-9673-8
Google Scholar
[13]
D. Yadav, J. Lee, The onset of MHD nanofluid convection with Hall current effect, Eur. Phys. J. Plus. 130(8) (2015) 162-183.
DOI: 10.1140/epjp/i2015-15162-9
Google Scholar
[14]
T. Parida, P.K. Rath, M. Das, Effect of Hall current and chemical reaction on MHD flow along a fluctuating porous flat plate with internal heat absorption/generation, J. Engin. Thermophys. 25(3) (2016) 424-442.
DOI: 10.1134/s1810232816030115
Google Scholar
[15]
G. Seth, S. Sarkar, R. Sharma, Effects of Hall current on unsteady hydromagnetic free convection flow past an impulsively moving vertical plate with Newtonian heating, International Journal of Applied Mechanics and Engineering. 21(1) (2016).
DOI: 10.1515/ijame-2016-0012
Google Scholar
[16]
R. Ellahi, M. M. Bhatti, I. Pop, Effects of hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct, Int. J. Numer. Methods Heat Fluid Flow. 26(6) (2016) 1802-1820.
DOI: 10.1108/hff-02-2015-0045
Google Scholar
[17]
Li. Kai, Liu. Jun, Liu. Weiqiang, Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model, Acta Astronautica. 130 (2017) 15-23.
DOI: 10.1016/j.actaastro.2016.10.013
Google Scholar
[18]
MD. Anwar Hossain, R.S.R. Gorla, Joule heating effect on magnetohydrodynamic mixed convection boundary layer flow with variable electrical conductivity. Int. J. Numer. Methods Heat Fluid Flow. 23(2) (2013) 275-288.
DOI: 10.1108/09615531311293461
Google Scholar
[19]
T. Hayat, M. Rafiq, A. Alsaedi, Ahmad, Radiative and Joule heating effects on peristaltic transport of dusty fluid in a channel with wall properties, Eur. Phys. J. Plus. 129 (2014) 225-234.
DOI: 10.1140/epjp/i2014-14225-9
Google Scholar
[20]
M. Nawaz, A. Zeeshan, R. Ellahi, S. Abbasbandy, S. Rashidi, Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method, Int. J. Numer. Methods Heat Fluid Flow. 25(3) (2015).
DOI: 10.1108/hff-04-2014-0103
Google Scholar
[21]
S. Das, R.N. Jana, O.D. Makinde, Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating, Alexandria Engineering Journal. 54(2) (2015) 251-261.
DOI: 10.1016/j.aej.2015.03.003
Google Scholar
[22]
D. Dutta, Effect of channel sidewalls on Joule heating induced sample dispersion in rectangular ducts, Int. J. Heat Mass Transfer. 93 (2016) 529-537.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.032
Google Scholar
[23]
A. Manglesh, M.G. Gorla, MHD free convective flow through porous medium in the presence of hall current, radiation and thermal diffusion, Indian J Pure Appl Math. 44(6) (2013) 743-756.
DOI: 10.1007/s13226-013-0040-9
Google Scholar
[24]
S.Y. Wu, Y.Y. Wu, L. Xiao, Effect of thermal radiation on convection heat transfer in cooling channel of photovoltaic thermal system, J Mech Sci Technol. 28(8) (2014) 3353-3360.
DOI: 10.1007/s12206-014-0746-6
Google Scholar
[25]
W. A. Khan, O. D. Makinde, Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, Int. J. Heat Mass Transfer. 96 (2016) 525-534.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.052
Google Scholar
[26]
M. Barzegar Gerdroodbary, M. Rahimi Takami, D.D. Ganji, Investigation of thermal radiation on traditional Jeffery-Hamel flow to stretchable convergent divergent channels, Case Studies in Thermal Engineering. 6 (2015) 28-39.
DOI: 10.1016/j.csite.2015.04.002
Google Scholar
[27]
O.D. Makinde, A. S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamics slip flow of Casson fluid in a microchannel filled with saturated porous media, Journal of Porous Media. 19(9) (2016) 799-810.
DOI: 10.1615/jpormedia.v19.i9.40
Google Scholar
[28]
T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer. Springer: New York, NY, USA, (1988).
Google Scholar