Thermal Radiation, Joule Heating and Hall Effects on Mixed Convective Navier Slip Flow in a Channel with Convective Heating

Article Preview

Abstract:

This paper examines the Navier slip, incompressible, laminar mixed convection flow between vertical plates with Joule heating and Hall effects. This research includes the thermal radiation with convective boundary conditions also. The resulting equations and boundary conditions are reduced into non dimensional form using appropriate transformations and solved numerically using shooting method coupled with fourth order Runge-Kutta-Fehlberg integration scheme.The influence of emerging parameters on fluid flow quantities have been presented graphically. Also, the nature of physical quantities is shown in tabular form.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 11)

Pages:

162-181

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Osborne, Incropera, F.P. Laminar, Mixed convection heat transfer for flow between horizontal parallel plates with asymmetric heating, Int. J. Heat Mass Transfer. 28(1) (1985) 207-217.

DOI: 10.1016/0017-9310(85)90023-7

Google Scholar

[2] D. Srinivasacharya, K. Kaladhar, Mixed Convection Flow of Chemically Reacting Couple Stress Fluid in a Vertical Channel with Soret and Dufour Effects, Int. J. Comput. Methods Eng. Sci. Mech. 15(5) (2014) 413-421.

DOI: 10.1080/15502287.2014.915251

Google Scholar

[3] S. Das, R.N. Jana, O.D. Makinde, Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids, Engineering Science and Technology an International Journal. 18(2) (2015) 244-255.

DOI: 10.1016/j.jestch.2014.12.009

Google Scholar

[4] M. Moslehi, M. Saghafian, MHD mixed convection slip flow in a vertical parallel plate microchannel heated at asymmetric and uniform heat flux, J Mech Sci Technol. 29(12) (2015) 5317-5324.

DOI: 10.1007/s12206-015-0739-0

Google Scholar

[5] A. Barletta, M. Miklavcic, On fully developed mixed convection with viscous dissipation in a vertical channel and its stability, Z. Angew. Math. Mech. 96 (2016) 1457-1466.

DOI: 10.1002/zamm.201500266

Google Scholar

[6] B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Mixed convection squeezing threedimensional flow in a rotating channel filled with nanofluid, Int. J. Numer. Methods Heat Fluid Flow. 26(5) (2016) 1460-1485.

DOI: 10.1108/hff-03-2015-0087

Google Scholar

[7] C.L.M.H. Navier, Memoire sur les lois du mouvement des fluides, MemAcad R Sci Paris, 6 (1823) 389-416.

Google Scholar

[8] O.A. Beg, M.J. Uddin, Rashidi, N. Kavyani, Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects, J. Engin. Thermophys. 23(2) (2014) 79-97.

DOI: 10.1134/s1810232814020015

Google Scholar

[9] G. Singh, O.D. Makinde, Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, Therm. Sci. 19(1) (2015) 119-128.

DOI: 10.2298/tsci120718110s

Google Scholar

[10] U. Mishra, G. A. Singh, Study of Mixed Convection Flow over Stretching Cylinder in Presence of Slip Flow and Thermal Jump Boundary Conditions, Int. J. Fluid Mech. 43(4) (2016) 308-318.

DOI: 10.1615/interjfluidmechres.v43.i4.20

Google Scholar

[11] K. Das, S. Jana, N. Acharya, Slip effects on squeezing flow of nanofluid between two parallel disks, International Journal of Applied Mechanics and Engineering. 21(1) (2016) 5-20.

DOI: 10.1515/ijame-2016-0001

Google Scholar

[12] S. Das, B.C. Sarkar, R.N. Jana, Hall effect on MHD free convection boundary layer flow past a vertical flat plate, Meccanica. 48(6) (2013) 1387-1398.

DOI: 10.1007/s11012-012-9673-8

Google Scholar

[13] D. Yadav, J. Lee, The onset of MHD nanofluid convection with Hall current effect, Eur. Phys. J. Plus. 130(8) (2015) 162-183.

DOI: 10.1140/epjp/i2015-15162-9

Google Scholar

[14] T. Parida, P.K. Rath, M. Das, Effect of Hall current and chemical reaction on MHD flow along a fluctuating porous flat plate with internal heat absorption/generation, J. Engin. Thermophys. 25(3) (2016) 424-442.

DOI: 10.1134/s1810232816030115

Google Scholar

[15] G. Seth, S. Sarkar, R. Sharma, Effects of Hall current on unsteady hydromagnetic free convection flow past an impulsively moving vertical plate with Newtonian heating, International Journal of Applied Mechanics and Engineering. 21(1) (2016).

DOI: 10.1515/ijame-2016-0012

Google Scholar

[16] R. Ellahi, M. M. Bhatti, I. Pop, Effects of hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct, Int. J. Numer. Methods Heat Fluid Flow. 26(6) (2016) 1802-1820.

DOI: 10.1108/hff-02-2015-0045

Google Scholar

[17] Li. Kai, Liu. Jun, Liu. Weiqiang, Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model, Acta Astronautica. 130 (2017) 15-23.

DOI: 10.1016/j.actaastro.2016.10.013

Google Scholar

[18] MD. Anwar Hossain, R.S.R. Gorla, Joule heating effect on magnetohydrodynamic mixed convection boundary layer flow with variable electrical conductivity. Int. J. Numer. Methods Heat Fluid Flow. 23(2) (2013) 275-288.

DOI: 10.1108/09615531311293461

Google Scholar

[19] T. Hayat, M. Rafiq, A. Alsaedi, Ahmad, Radiative and Joule heating effects on peristaltic transport of dusty fluid in a channel with wall properties, Eur. Phys. J. Plus. 129 (2014) 225-234.

DOI: 10.1140/epjp/i2014-14225-9

Google Scholar

[20] M. Nawaz, A. Zeeshan, R. Ellahi, S. Abbasbandy, S. Rashidi, Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method, Int. J. Numer. Methods Heat Fluid Flow. 25(3) (2015).

DOI: 10.1108/hff-04-2014-0103

Google Scholar

[21] S. Das, R.N. Jana, O.D. Makinde, Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating, Alexandria Engineering Journal. 54(2) (2015) 251-261.

DOI: 10.1016/j.aej.2015.03.003

Google Scholar

[22] D. Dutta, Effect of channel sidewalls on Joule heating induced sample dispersion in rectangular ducts, Int. J. Heat Mass Transfer. 93 (2016) 529-537.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.032

Google Scholar

[23] A. Manglesh, M.G. Gorla, MHD free convective flow through porous medium in the presence of hall current, radiation and thermal diffusion, Indian J Pure Appl Math. 44(6) (2013) 743-756.

DOI: 10.1007/s13226-013-0040-9

Google Scholar

[24] S.Y. Wu, Y.Y. Wu, L. Xiao, Effect of thermal radiation on convection heat transfer in cooling channel of photovoltaic thermal system, J Mech Sci Technol. 28(8) (2014) 3353-3360.

DOI: 10.1007/s12206-014-0746-6

Google Scholar

[25] W. A. Khan, O. D. Makinde, Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, Int. J. Heat Mass Transfer. 96 (2016) 525-534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[26] M. Barzegar Gerdroodbary, M. Rahimi Takami, D.D. Ganji, Investigation of thermal radiation on traditional Jeffery-Hamel flow to stretchable convergent divergent channels, Case Studies in Thermal Engineering. 6 (2015) 28-39.

DOI: 10.1016/j.csite.2015.04.002

Google Scholar

[27] O.D. Makinde, A. S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamics slip flow of Casson fluid in a microchannel filled with saturated porous media, Journal of Porous Media. 19(9) (2016) 799-810.

DOI: 10.1615/jpormedia.v19.i9.40

Google Scholar

[28] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer. Springer: New York, NY, USA, (1988).

Google Scholar