[1]
G. Ibáñez, S. Cuevas, Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel, Energy 35(10) (2010) 4149-4155.
DOI: 10.1016/j.energy.2010.06.035
Google Scholar
[2]
L. B. Erbay, M. M. Yalçın, and M. Ş. Ercan, Entropy generation in parallel plate microchannels, Heat and mass transfer 43(8) (2007) 729-739.
DOI: 10.1007/s00231-006-0164-0
Google Scholar
[3]
C. Zhang, Y. Chen, G. P. Peterson, Thermal slip for liquids at rough solid surfaces. Physical Review E, 89(6) (2014) 062407.
Google Scholar
[4]
X. Chen, H. Ye, X. Fan, Ren, T., G. Zhang, A review of small heat pipes for electronics, Applied Thermal Engin. 96 (2016) 1-17.
DOI: 10.1016/j.applthermaleng.2015.11.048
Google Scholar
[5]
M. Torabi, Z. Zhang, G. P. Peterson, Interface entropy generation in micro porous channels with velocity slip and temperature jump, Applied Thermal Engin. 111 (2017) 684-693.
DOI: 10.1016/j.applthermaleng.2016.09.148
Google Scholar
[6]
A. Salari, M. Navi, C. Dalton, A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications, Biomicrofluidics 9(1) (2015) 014113.
DOI: 10.1063/1.4907673
Google Scholar
[7]
A. Raisi, B. Ghasemi, S. M. Aminossadati, A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions, Numerical Heat Transfer Part A: Applications 59(2) (2011) 114-129.
DOI: 10.1080/10407782.2011.540964
Google Scholar
[8]
B. H. Salman, H. A. Mohammed, K. M. Munisamy, A. S. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review, Renewable and Sustainable Energy Reviews 28 (2013).
DOI: 10.1016/j.rser.2013.08.012
Google Scholar
[9]
G. Ibáñez, A. López, J. Pantoja, J. Moreira, Combined effects of uniform heat flux boundary conditions and hydrodynamic slip on entropy generation in a microchannel, Int. J. of Heat and Mass Transfer 73 (2014) 201-206.
DOI: 10.1016/j.ijheatmasstransfer.2014.02.007
Google Scholar
[10]
A. Malvandi, D. D. Ganji, Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, Int. J. of Thermal Sci. 84 (2014). 196-206.
DOI: 10.1016/j.ijthermalsci.2014.05.013
Google Scholar
[11]
Y.T. Yang, Y.H. Wang, B.Y. Huang, Numerical optimization for nanofluid flow in microchannels using entropy generation minimization, Numerical Heat Transfer, Part A: Applications 67(5) (2015) 571-588.
DOI: 10.1080/10407782.2014.937282
Google Scholar
[12]
A.A. Avramenko, A.I. Tyrinov, I.V. Shevchuk, N.P. Dmitrenko, A.V. Kravchuk, V.I. Shevchuk, Mixed convection in a vertical flat microchannel, Int. J. of Heat and Mass Transfer 106 (2017) 1164-1173.
DOI: 10.1016/j.ijheatmasstransfer.2016.10.096
Google Scholar
[13]
M. Heydari, D. Toghraie, O. A. Akbari, The effect of triangular porous medium and non-Newtonian nanofluid on flow and heat transfer properties in a constant-flux microchannel, Thermal Sci. and Eng. Progress (2017).
DOI: 10.1016/j.tsep.2017.05.010
Google Scholar
[14]
M. Abbaszadeh, A. Ababaei, A. A. A. Arani, A. A. Sharifabadi, MHD forced convection and entropy generation of CuO-water nanofluid in a microchannel considering slip velocity and temperature jump, J.of the Brazilian Society of Mechanical Sci. and Eng. 39(3) (2017).
DOI: 10.1007/s40430-016-0578-7
Google Scholar
[15]
N. K. Ranjit, G. C. Shit, Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip, Physica A: Statistical Mechanics and its Applications, 482 (2017).
DOI: 10.1016/j.physa.2017.04.072
Google Scholar
[16]
K. Bhattacharyya, MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation, J. of Thermodynamics 2013 (2013) 9 pages http://dx.doi.org/10.1155/2013/169674.
DOI: 10.1155/2013/169674
Google Scholar
[17]
M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, R. S. R. Gorla, Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium, Eng. Sci. and Technology, an Int. J. 19(1) (2016).
DOI: 10.1016/j.jestch.2015.06.010
Google Scholar
[18]
M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study, Int. J. of Heat and Mass Transfer, 96 (2016) 513-524.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.059
Google Scholar
[19]
G. Ibáñez, A. López, J. Pantoja, J. Moreira, Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation, Int. J. of Heat and Mass Transfer 100 (2016) 89-97.
DOI: 10.1016/j.ijheatmasstransfer.2016.04.089
Google Scholar
[20]
G. C. Shit, A. Mondal, A. Sinha, P. K. Kundu, Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation, Physica A: Statistical Mechanics and its Applications 462 (2016).
DOI: 10.1016/j.physa.2016.06.142
Google Scholar
[21]
A.S. Eegunjobi, O.D. Makinde, Effects of Navier slip on entropy generation in a porous channel with suction/injection, J. Therm. Sci. Tech. 7 (2012) 522–535.
DOI: 10.1299/jtst.7.522
Google Scholar
[22]
S. Das, R.N. Jana, Entropy generation due to MHD flow in a porous channel with Navier slip, Ain Shams Eng. J. 5 (2) (2014) 575–584.
DOI: 10.1016/j.asej.2013.11.005
Google Scholar
[23]
G. Ibáñez, Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions, Int. J. of Heat and Mass Transfer 80 (2015) 274-280.
DOI: 10.1016/j.ijheatmasstransfer.2014.09.025
Google Scholar
[24]
M.J. Uddin, O.A. Beg, A.I. Ismail, Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects, J. Thermophys. Heat Transfer 29(3) (2015) 513–523.
DOI: 10.2514/1.t4372
Google Scholar
[25]
S. Shaw, P.K. Kameswaran, P. Sibanda, Effects of slip on nonlinear convection in nanofluid flow on stretching surfaces, Boundary Value Problems (2016).
DOI: 10.1186/s13661-015-0506-2
Google Scholar
[26]
A. Lopez, G. Ibanez, J. Pantoja, J. Moreira, Orlando Lastres, Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions, J. of Heat and Mass Transfer, 107 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2016.10.126
Google Scholar
[27]
G.K. Ramesh, B.C. Prasannakumara, B.J. Gireesha, M.M. Rashidi, Casson Fluid Flow near the Stagnation Point over a Stretching Sheet with Variable Thickness and Radiation, J. of Appl. Fluid Mech. 9 (2016) 1115-1122.
DOI: 10.18869/acadpub.jafm.68.228.24584
Google Scholar
[28]
M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J.of colloid and interface sci. 498 (2017) 85-90.
DOI: 10.1016/j.jcis.2017.03.024
Google Scholar
[29]
C. O. Ng, Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel, J. of Non-Newtonian Fluid Mechanics 198 (2013) 1-9.
DOI: 10.1016/j.jnnfm.2013.03.003
Google Scholar
[30]
A.D. Passos, V.A. Chatzieleftheriou, A.A. Mouza, S.V. Paras, Casson fluid flow in a microchannel containing a flow disturbing rib, Chemical Eng.Sci. 148 (2016) 229-237.
DOI: 10.1016/j.ces.2016.04.006
Google Scholar
[31]
A. Jasmine Benazir, R. Sivaraj, O.D. Makinde, Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink, Int. J. of Eng. Research in Africa, 21 (2016) 69-83.
DOI: 10.4028/www.scientific.net/jera.21.69
Google Scholar
[32]
W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, J. of Aerospace Eng., 29(2) (2016) Article number 04015037.
DOI: 10.1061/(asce)as.1943-5525.0000529
Google Scholar
[33]
N.S. Shashikumar, M. Archana, B.C. Prasannakumara, B.J. Gireesha, O. D. Makinde, Effects of nonlinear thermal radiation and second order slip on Casson nanofluid flow between parallel plates, Defect and Diffusion Forum Vol. 377 (2017) pp.84-94.
DOI: 10.4028/www.scientific.net/ddf.377.84
Google Scholar
[34]
O.D. Makinde, A.S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media, J. of Porous Media, 19(9) (2016) 799-810.
DOI: 10.1615/jpormedia.v19.i9.40
Google Scholar
[35]
A.S. Eegunjobi, O.D. Makinde, MHD Mixed Convection Slip Flow of Radiating Casson Fluid with Entropy Generation in a Channel Filled with Porous Media, Trans Tech Publications, In Defect and Diffusion Forum Vol. 374 (2017) pp.47-66.
DOI: 10.4028/www.scientific.net/ddf.374.47
Google Scholar