Thermodynamics Analysis of MHD Casson Fluid Slip Flow in a Porous Microchannel with Thermal Radiation

Article Preview

Abstract:

The heat transfer and entropy generation in a MHD flow of Casson fluid through a porous microchannel with thermal radiation were investigated numerically. Combined effects of suction/injection, hydrodynamic slip, magnetic field and convective boundary condition on the heat transfer and entropy generation are studied. The dimensionless equations are solved numerically by using fourth-fifth-order Runge–Kutta integration method along with shooting technique. Moreover, influences of pertinent parameters on velocity, temperature and entropy generation were discussed in detail and illustrated graphically. Based on numerical results, we can see that, entropy generation rate increases with an increase in radiation parameter and Biot number. As Hartmann number increases, the entropy generation decreases at the both cooled and heated plates and increases at the centerline region of the microchannel.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 16)

Pages:

120-139

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Ibáñez, S. Cuevas, Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel, Energy 35(10) (2010) 4149-4155.

DOI: 10.1016/j.energy.2010.06.035

Google Scholar

[2] L. B. Erbay, M. M. Yalçın, and M. Ş. Ercan, Entropy generation in parallel plate microchannels, Heat and mass transfer 43(8) (2007) 729-739.

DOI: 10.1007/s00231-006-0164-0

Google Scholar

[3] C. Zhang, Y. Chen, G. P. Peterson, Thermal slip for liquids at rough solid surfaces. Physical Review E, 89(6) (2014) 062407.

Google Scholar

[4] X. Chen, H. Ye, X. Fan, Ren, T., G. Zhang, A review of small heat pipes for electronics, Applied Thermal Engin. 96 (2016) 1-17.

DOI: 10.1016/j.applthermaleng.2015.11.048

Google Scholar

[5] M. Torabi, Z. Zhang, G. P. Peterson, Interface entropy generation in micro porous channels with velocity slip and temperature jump, Applied Thermal Engin. 111 (2017) 684-693.

DOI: 10.1016/j.applthermaleng.2016.09.148

Google Scholar

[6] A. Salari, M. Navi, C. Dalton, A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications, Biomicrofluidics 9(1) (2015) 014113.

DOI: 10.1063/1.4907673

Google Scholar

[7] A. Raisi, B. Ghasemi, S. M. Aminossadati, A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions, Numerical Heat Transfer Part A: Applications 59(2) (2011) 114-129.

DOI: 10.1080/10407782.2011.540964

Google Scholar

[8] B. H. Salman, H. A. Mohammed, K. M. Munisamy, A. S. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review, Renewable and Sustainable Energy Reviews 28 (2013).

DOI: 10.1016/j.rser.2013.08.012

Google Scholar

[9] G. Ibáñez, A. López, J. Pantoja, J. Moreira, Combined effects of uniform heat flux boundary conditions and hydrodynamic slip on entropy generation in a microchannel, Int. J. of Heat and Mass Transfer 73 (2014) 201-206.

DOI: 10.1016/j.ijheatmasstransfer.2014.02.007

Google Scholar

[10] A. Malvandi, D. D. Ganji, Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, Int. J. of Thermal Sci. 84 (2014). 196-206.

DOI: 10.1016/j.ijthermalsci.2014.05.013

Google Scholar

[11] Y.T. Yang, Y.H. Wang, B.Y. Huang, Numerical optimization for nanofluid flow in microchannels using entropy generation minimization, Numerical Heat Transfer, Part A: Applications 67(5) (2015) 571-588.

DOI: 10.1080/10407782.2014.937282

Google Scholar

[12] A.A. Avramenko, A.I. Tyrinov, I.V. Shevchuk, N.P. Dmitrenko, A.V. Kravchuk, V.I. Shevchuk, Mixed convection in a vertical flat microchannel, Int. J. of Heat and Mass Transfer 106 (2017) 1164-1173.

DOI: 10.1016/j.ijheatmasstransfer.2016.10.096

Google Scholar

[13] M. Heydari, D. Toghraie, O. A. Akbari, The effect of triangular porous medium and non-Newtonian nanofluid on flow and heat transfer properties in a constant-flux microchannel, Thermal Sci. and Eng. Progress (2017).

DOI: 10.1016/j.tsep.2017.05.010

Google Scholar

[14] M. Abbaszadeh, A. Ababaei, A. A. A. Arani, A. A. Sharifabadi, MHD forced convection and entropy generation of CuO-water nanofluid in a microchannel considering slip velocity and temperature jump, J.of the Brazilian Society of Mechanical Sci. and Eng. 39(3) (2017).

DOI: 10.1007/s40430-016-0578-7

Google Scholar

[15] N. K. Ranjit, G. C. Shit, Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip, Physica A: Statistical Mechanics and its Applications, 482 (2017).

DOI: 10.1016/j.physa.2017.04.072

Google Scholar

[16] K. Bhattacharyya, MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation, J. of Thermodynamics 2013 (2013) 9 pages http://dx.doi.org/10.1155/2013/169674.

DOI: 10.1155/2013/169674

Google Scholar

[17] M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, R. S. R. Gorla, Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium, Eng. Sci. and Technology, an Int. J. 19(1) (2016).

DOI: 10.1016/j.jestch.2015.06.010

Google Scholar

[18] M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study, Int. J. of Heat and Mass Transfer, 96 (2016) 513-524.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.059

Google Scholar

[19] G. Ibáñez, A. López, J. Pantoja, J. Moreira, Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation, Int. J. of Heat and Mass Transfer 100 (2016) 89-97.

DOI: 10.1016/j.ijheatmasstransfer.2016.04.089

Google Scholar

[20] G. C. Shit, A. Mondal, A. Sinha, P. K. Kundu, Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation, Physica A: Statistical Mechanics and its Applications 462 (2016).

DOI: 10.1016/j.physa.2016.06.142

Google Scholar

[21] A.S. Eegunjobi, O.D. Makinde, Effects of Navier slip on entropy generation in a porous channel with suction/injection, J. Therm. Sci. Tech. 7 (2012) 522–535.

DOI: 10.1299/jtst.7.522

Google Scholar

[22] S. Das, R.N. Jana, Entropy generation due to MHD flow in a porous channel with Navier slip, Ain Shams Eng. J. 5 (2) (2014) 575–584.

DOI: 10.1016/j.asej.2013.11.005

Google Scholar

[23] G. Ibáñez, Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions, Int. J. of Heat and Mass Transfer 80 (2015) 274-280.

DOI: 10.1016/j.ijheatmasstransfer.2014.09.025

Google Scholar

[24] M.J. Uddin, O.A. Beg, A.I. Ismail, Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects, J. Thermophys. Heat Transfer 29(3) (2015) 513–523.

DOI: 10.2514/1.t4372

Google Scholar

[25] S. Shaw, P.K. Kameswaran, P. Sibanda, Effects of slip on nonlinear convection in nanofluid flow on stretching surfaces, Boundary Value Problems (2016).

DOI: 10.1186/s13661-015-0506-2

Google Scholar

[26] A. Lopez, G. Ibanez, J. Pantoja, J. Moreira, Orlando Lastres, Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions, J. of Heat and Mass Transfer, 107 (2017).

DOI: 10.1016/j.ijheatmasstransfer.2016.10.126

Google Scholar

[27] G.K. Ramesh, B.C. Prasannakumara, B.J. Gireesha, M.M. Rashidi, Casson Fluid Flow near the Stagnation Point over a Stretching Sheet with Variable Thickness and Radiation, J. of Appl. Fluid Mech. 9 (2016) 1115-1122.

DOI: 10.18869/acadpub.jafm.68.228.24584

Google Scholar

[28] M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J.of colloid and interface sci. 498 (2017) 85-90.

DOI: 10.1016/j.jcis.2017.03.024

Google Scholar

[29] C. O. Ng, Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel, J. of Non-Newtonian Fluid Mechanics 198 (2013) 1-9.

DOI: 10.1016/j.jnnfm.2013.03.003

Google Scholar

[30] A.D. Passos, V.A. Chatzieleftheriou, A.A. Mouza, S.V. Paras, Casson fluid flow in a microchannel containing a flow disturbing rib, Chemical Eng.Sci. 148 (2016) 229-237.

DOI: 10.1016/j.ces.2016.04.006

Google Scholar

[31] A. Jasmine Benazir, R. Sivaraj, O.D. Makinde, Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink, Int. J. of Eng. Research in Africa, 21 (2016) 69-83.

DOI: 10.4028/www.scientific.net/jera.21.69

Google Scholar

[32] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, J. of Aerospace Eng., 29(2) (2016) Article number 04015037.

DOI: 10.1061/(asce)as.1943-5525.0000529

Google Scholar

[33] N.S. Shashikumar, M. Archana, B.C. Prasannakumara, B.J. Gireesha, O. D. Makinde, Effects of nonlinear thermal radiation and second order slip on Casson nanofluid flow between parallel plates, Defect and Diffusion Forum Vol. 377 (2017) pp.84-94.

DOI: 10.4028/www.scientific.net/ddf.377.84

Google Scholar

[34] O.D. Makinde, A.S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media, J. of Porous Media, 19(9) (2016) 799-810.

DOI: 10.1615/jpormedia.v19.i9.40

Google Scholar

[35] A.S. Eegunjobi, O.D. Makinde, MHD Mixed Convection Slip Flow of Radiating Casson Fluid with Entropy Generation in a Channel Filled with Porous Media, Trans Tech Publications, In Defect and Diffusion Forum Vol. 374 (2017) pp.47-66.

DOI: 10.4028/www.scientific.net/ddf.374.47

Google Scholar