[1]
S.U.S. Choi, J.A. Eastman, (1995), Enhancing thermal conductivity of fluids with nanoparticles, Developments Applications of Non-Newtonian Flows,, FED-vol. 231/MD-vol. 66, ASME, New York, pp.99-105.
Google Scholar
[2]
M. Pirhayati, M. A. Akhavan-Behabadi and M. Khaya, (2012), Pressure drop of CuO-base oil nanofluid flow inside an inclined tube, International Journal of Advances in Engineering & Technology, 5(1), pp.122-129, ISSN: 2231-(1963).
Google Scholar
[3]
M. Pirhayati, M. A. Akhavan-Behabadi and M. Khaya (2014), Convective Heat Transfer of Oil based Nanofluid Flow inside a Circular Tube, IJE TRANSACTIONS B: Applications, 27(2), pp.341-348.
DOI: 10.5829/idosi.ije.2014.27.02b.18
Google Scholar
[4]
S. Bhaumik and D. Pathak, (2015), Analysis of Anti-Wear Properties of CuO Nanoparticles as Friction Modifiers in Mineral Oil (460cSt Viscosity) Using Pin-On-Disk Tribometer, Tribology in Industry, 37(2), pp.196-203.
Google Scholar
[5]
A. A. Karamallah and A. A Hussein, (2016), Convective Heat Transfer and Stability of Oil –Based Nanofluid, Indian Journal of Science and Technology, 9(48).
DOI: 10.17485/ijst/2016/v9i48/104434
Google Scholar
[6]
R.U. Haq, F. Shahzad and Q. M. Al-Mdallal, (2017), MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders, Results in Physics 7, p.57–68.
DOI: 10.1016/j.rinp.2016.11.057
Google Scholar
[7]
O.D. Makinde and A. Aziz (2010), Second law analysis for a variable viscosity plane Poiseuille flow with asymmetric convective cooling, Computers and Mathematics with Applications, 60, p.3012–3019.
DOI: 10.1016/j.camwa.2010.09.063
Google Scholar
[8]
T. Chinyoka and O.D. Makinde, (2011), Analysis of transient Generalized Couette flow of a reactive variable viscosity third-grade liquid with asymmetric convective cooling, Mathematical and Computer Modelling, 54, p.160–174.
DOI: 10.1016/j.mcm.2011.01.047
Google Scholar
[9]
M.B.K. Moorthy and K. Senthilvadivu, (2012), Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity, Journal of Applied Mathematics, Volume 2012, pp.1-15.
DOI: 10.1155/2012/634806
Google Scholar
[10]
O. D. Makinde (2012), Effect of variable viscosity on thermal boundary layer over a permeable flat plate with radiation and a convective surface boundary condition, Journal of Mechanical Science and Technology, Vol. 26, No 5, 1615-1622.
DOI: 10.1007/s12206-012-0302-1
Google Scholar
[11]
S.M.M. EL-Kabeir, M. Modather and A.M. Rashad, (2013).
Google Scholar
[12]
CJ Etwire, Y.I. Seini, G. Abe-I-kpeng ( 2017), Magnetohydrodynamic flow of casson fluid over a vertical plate embedded in porous media with joule heating and convective boundary conditions. Asian journal of mathematics and computer research 19(2) pp.50-64.
Google Scholar
[13]
A.S. Eegunjobi and O.D. Makinde, (2014), Entropy generation analysis in transient variable viscosity Couette flow between two concentric pipes, Journal of Thermal Science and Technology, 9(2), pp.1-11.
DOI: 10.1299/jtst.2014jtst0008
Google Scholar
[14]
O.D. Makinde, W.A. Khan and J.R. Culham, (2016).
Google Scholar
[15]
O. D. Makinde and S. R. Mishra, (2017), Chemically reacting MHD mixed convection variable viscosity Blasius flow embedded in a porous medium. Defect and Diffusion Forum, Vol. 374, pp.83-91.
DOI: 10.4028/www.scientific.net/ddf.374.83
Google Scholar
[16]
V. Kuppalapalle, P.K. Vinayaka and N.G. Chiu-On, (2013), The effect of variable viscosity on the flow and heat transfer of a viscous Ag- water and Cu-water nanofluids, journal of hydrodynamics, 25(1), pp.1-9.
DOI: 10.1016/s1001-6058(13)60332-7
Google Scholar
[17]
I.S. Shivakumara and M. Dhananjaya, (2014), Onset of Convection in a Nanofluid Saturated Porous Layer with Temperature Dependent Viscosity, Int. Journal of Engineering Research and Applications, 4(8), pp.80-85.
Google Scholar
[18]
M.J. Uddin, W.A. Khan and N.S. Amin, (2014) g-Jitter Mixed Convective Slip Flow of Nanofluid past a Permeable Stretching Sheet Embedded in a Darcian Porous Media with Variable Viscosity, PLoS ONE 9(6), pp.1-12.
DOI: 10.1371/journal.pone.0099384
Google Scholar
[19]
A. Noghrehabadi , M. Ghalambaz and A. Ghanbarzadeh, (2014), effects of variable viscosity and thermal conductivity on natural-convection of nanofluids past a vertical plate in porous media, Journal of Mechanics, 30(3), pp.265-275.
DOI: 10.1017/jmech.2013.61
Google Scholar
[20]
M. James, E.W. Mureithi and D. Kuznetsov, (2015).
Google Scholar
[21]
R. Nasrin and M. A. Alim, (2015), Entropy generation by nanofluid with variable thermal conductivity and viscosity in a flat plate solar collector, International Journal of Engineering, Science and Technology, 7(2), pp.80-93.
DOI: 10.4314/ijest.v7i2.7
Google Scholar
[22]
N. Alvi, T. Latif, Q. Hussain and S. Asghar, (2016), Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles, Results in Physics 6, p.1109–1125.
DOI: 10.1016/j.rinp.2016.11.045
Google Scholar
[23]
P Ram, V.K. Joshi, K. Sharma, M. Walia, and N. Yadav, (2016) Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate, Open Phys., 14, p.651–658.
DOI: 10.1515/phys-2016-0072
Google Scholar
[24]
I. Shahzadi, S. Nadeem and F. Rabiei, (2017), Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls, Results in Physics, 7, p.667–676.
DOI: 10.1016/j.rinp.2016.12.024
Google Scholar
[25]
S.B. Chandra; R. Alluguvelli and K, Naikoti, (2017), Effects of Variable Viscosity and Thermal Conductivity on MHD Boundary Layer Flow of Nanofluid with Thermal Radiation, 6(1), pp.59-70.
DOI: 10.1166/jon.2017.1288
Google Scholar
[26]
A.B. Huda, N.S. Akbar, O.A. Beg and M.Y. Khan, (2017), Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves, Results in Physics, 7. p.413–425.
DOI: 10.1016/j.rinp.2016.12.036
Google Scholar
[27]
C.J. Etwire, Y.I. Seini and R. Musah, (2017), Effects of Oil-Based Nanofluid on a Stretching Surface with Variable Suction and Thermal Conductivity, Diffusion Foundations, 11. pp.99-109.
DOI: 10.4028/www.scientific.net/df.11.99
Google Scholar
[28]
Brinkman, H.C., (1952), Viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581.
Google Scholar
[29]
Maxwell J.C., A Treatise on Electricity and Magnetism. UK: Clarendon, (1973).
Google Scholar
[30]
A. Aziz, (2009), A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simulat., 14, pp.1064-1068.
DOI: 10.1016/j.cnsns.2008.05.003
Google Scholar