The Flow of Radiated Carreau Dusty Fluid over Exponentially Stretching Sheet with Partial Slip at the Wall

Article Preview

Abstract:

In this study, we addressed the impact of magnetic field on fluid flow and heat transfer of an in compressible Carreau fluid over exponentially stretching sheet in addition with fluid and dust particle suspension. Thermal radiation and non-uniform heat source/sink were included to develop heat transport phenomena. Dusty fluids have various applications such as processing of material, nuclear heat treatment, cooling process, treatment of waste water etc. The relevant governing equations are converted into ordinary differential equation using similarity transformation the transformed ordinary differential equations are then solved numerically by shooting technique along with Runge-Kutta method The effect of certain parameters on the dimensionless velocity and temperature are presented graphically. The physical quantities of the flow such as the friction factor and Local Nusselt number were calculated. It was found from the study that the velocity slip parameter increases the temperature profiles.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 16)

Pages:

96-108

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Saffman, On the stability of a laminar flow of a dusty gas, J. Fluid Mech13, (1) (1962) 120-128.

Google Scholar

[2] V.M. Agranat, Effect of pressure gradient on friction and heat transfer in a dusty boundary layer, Fluid Dynamics, 23 (5) (1988) 729-732.

DOI: 10.1007/bf02614150

Google Scholar

[3] N. Datta and S.K. Mishra, Boundary Layer Flow of a Dusty Fluid over a Semi-Infinite Flat Plate, Acta. Mech, 42 (1) (1982) 71-83.

DOI: 10.1007/bf01176514

Google Scholar

[4] G Palani and P Ganesan , Heat transfer effects on dusty gas flow past a semi-infinite inclined plate, Forsch Ingenieurwes, 71 (3) (2007) 223-230.

DOI: 10.1007/s10010-007-0061-9

Google Scholar

[5] K. Vajravelu and J. Nayfeh, Diffusion of chemically reactive species in a porous meadia over a stretching sheet, Int. J. Nonlin. Mech, 320 (1) (2006) 322–339.

DOI: 10.1016/j.jmaa.2005.06.095

Google Scholar

[6] B.J. Gireesha, G.K. Ramesh, M.Subhas Abel and C.S. Bagewadi , Boundarylayer flow and Heat Transfer of a Dusty Fluid Flow over a Stretching Sheet with Non-uniform heat Source/Sink, Int. J. Multiphase Flow, 37 (8) (2011) 977-982.

DOI: 10.1016/j.ijmultiphaseflow.2011.03.014

Google Scholar

[7] B.C. Prasanna Kumar, B.J. Gireesha, P.T. Manjunath, Melting phenomenon in MHD stagnation point flow of dusty fluid over stretching sheet in presence of thermal radiation &non-uniform heat source/sink, International journals on computational methods in Engineering ,Science & Mechanics, 16 (5) (2015).

DOI: 10.1080/15502287.2015.1047056

Google Scholar

[8] G.K. Ramesh, B.J. Gireesha, C.S. Bagewadi, MHD flow of dusty fluid near a stagnation point over permeable stretching sheet with non-uniform source/sink, Journals on heat and mass transfer , 55 (17-18) (2012) 4900-4907.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.003

Google Scholar

[9] G.M. Pavitra, B.J. Gireesha, C.S. Bagewadi, Boundary Layer Flow and Heat Transfer of a Dusty Fluid over an Exponentially Stretching Sheet, B J of Mathematics & Computer Science, 2 (4) (2012) 187-197.

DOI: 10.9734/bjmcs/2012/1250

Google Scholar

[10] C.S.K. Raju, N. Sandeep. Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, Journal of Molecular liquids 215 (2016)115-126.

DOI: 10.1016/j.molliq.2015.12.058

Google Scholar

[11] I.L. Animasaun, C.S.K. Raju, N. Sandeep, Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation, Alexandria Engineering Journal 55, 2(2016).

DOI: 10.1016/j.aej.2016.01.018

Google Scholar

[12] G.K. Ramesh, B.J. Gireesha and C.S. Bagewadi, Stagnation point flow of a MHD dusty fluid towards a stretching sheet with radiation, Afrika Matematika, 25 (1) (2014) 237-249.

DOI: 10.1007/s13370-012-0114-6

Google Scholar

[13] C.S.K. Raju, N. Sandeep, Falkner-Skan flow of a Magnetic-Carreau fluid past a wedge in the presence of cross diffusion effects. The European Physical Journal Plus 131, 8 (2016) 267.

DOI: 10.1140/epjp/i2016-16267-3

Google Scholar

[14] Sunil, Anupama Sharma, Pardeep Kumar, Urvashi Gupta, The effect of magnetic-field dependent viscosity and rotation on ferrothermohaline convection saturating a porous medium, J. Geophysics and Eng, 2 (3) (2005) 238-251.

DOI: 10.1088/1742-2132/2/3/008

Google Scholar

[15] M.A.A. Mahmoud, Thermal radiation effects on MHD flow of a micro polar fluid over a stretching surface with variable thermal conductivity, Physica. A, 375 (2) (2007) 401–410.

DOI: 10.1016/j.physa.2006.09.010

Google Scholar

[16] G.C. Hazarika, Variable viscosity and thermal conductivity on convective heat transfer in a dusty fluid over a vertical permeable surface with radiation and viscous dissipation, Int. J. Comp. Appli, 103 (11) (2014) 39-54.

DOI: 10.5120/18121-9439

Google Scholar

[17] S. Mohamad Isa and A. Ali, Thermal Radiation Effect on Hydromagnetic Flow of Dusty Fluid over a Stretching Vertical Surface, J. Teknologi (Sciences & Engineering), 71 (5) (2014)17–20.

DOI: 10.11113/jt.v71.3846

Google Scholar

[18] S. Nadeem, R.U. Haq, N.S. Akbar and Z.H. Khan , MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alexandria Eng J, 52 (4) (2013) 577–82.

DOI: 10.1016/j.aej.2013.08.005

Google Scholar

[19] T. Hayat, Sadia Asad, M. Mustafa and A. Alsaedi, Boundary layer flow of Carreau fluid over a convectively heated stretching sheet, Applied Mathematics and Computation, 246 (2014)12–22.

DOI: 10.1016/j.amc.2014.07.083

Google Scholar

[20] S.A. Shehzad, A. Alsaedi and T. Hayat, Three-dimensional flow of Jeffery fluid with convective surface boundary conditions, Int. J Heat Mass Transfer, 55 (15-16) (2012) 3971–3976.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.027

Google Scholar

[21] Masood Khan and Hashima, Boundary layer flow and heat transfer to Carreaufluid over a nonlinear stretching sheet, AIP Advances, 5 (10) (2015) 1-14.

DOI: 10.1063/1.4932627

Google Scholar

[22] N.S. Akbar, S. Nadeem, Rizwan UlHaq and Shiwei Ye, MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet dual solutions, Ain Shams Engineering Journal, 5 (4) (2014) 1233-1239.

DOI: 10.1016/j.asej.2014.05.006

Google Scholar

[23] Ishak A, Nazar R, Pop I, Heat transfer over a stretching surface with variable heat flux in micro polar fluids, Phys. Lett, A. 372 (5) (2008) 559–561.

DOI: 10.1016/j.physleta.2007.08.003

Google Scholar

[24] M.S. Abel, N.Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Mod. 32 (2008)1965-(1983).

DOI: 10.1016/j.apm.2007.06.038

Google Scholar

[25] C.S.K. Raju, N. Sandeep, Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface, Alexandria Eng. J. 55 (2016) 1115–1126.

DOI: 10.1016/j.aej.2016.03.023

Google Scholar

[26] C.S.K. Raju, N. Sandeep, Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: A numerical study, J. Magn. Magn.Mater. 421 (2017), 216–224.

DOI: 10.1016/j.jmmm.2016.08.013

Google Scholar

[27] C.S.K. Raju, K.R. Sekhar, S.M. Ibrahim, G. Lorenzini, G. Viswanatha Reddy, E. Lorenzini, Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles, Contin. Mech. Thermodyn. (2017).

DOI: 10.1007/s00161-016-0552-8

Google Scholar

[28] C. S. K Raju, Hoque, M. M., Anika, N. N, Mamatha, S. U, & Sharma P, Natural convective heat transfer analysis of MHD unsteady Carreau nanofluid over a cone packed with alloy nanoparticles. Powder Technology, 317 (2017), 408-416.

DOI: 10.1016/j.powtec.2017.05.003

Google Scholar

[29] Mamatha S. Upadya, Mahesha, C.S.K. Raju, Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions, Informatics in Medicine Unlocked, 9(2017) 76-85.

DOI: 10.1016/j.imu.2017.06.001

Google Scholar

[30] M.R. Krishnamurthy, B.J. Gireesha, R.S.R. Gorla, B.C. Prasannakumara, Suspended Particle Effect on Slip Flow and Melting Heat Transfer of Nanofluid Over a Stretching Sheet Embedded in a Porous Medium in the Presence of Nonlinear Thermal Radiation, J. Nanofluids. 5 (2016).

DOI: 10.1166/jon.2016.1247

Google Scholar

[31] R. Nandkeolyar, G. S. Seth, O. D. Makinde, P. Sibanda, M. S. Ansari: Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation. ASME-Journal of Applied Mechanics- Vol. 80, 061003(1-9), (2013).

DOI: 10.1115/1.4023959

Google Scholar

[32] Om Prakash, O.D. Makinde, D. Kumar, Y.K. Dwivedi: Heat transfer to MHD oscillatory dusty fluid flow in a channel filled with a porous medium. Sadhana- Academy Proceedings in Engineering Science Vol. 40(4), 1273-1282, (2015).

DOI: 10.1007/s12046-015-0371-9

Google Scholar

[33] O. D. Makinde, T. Chinyoka: Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling, Communications in Nonlinear Science and Numerical Simulations –Vol. 15, 3919-3930, (2010).

DOI: 10.1016/j.cnsns.2010.01.013

Google Scholar

[34] P. Sibanda, O. D. Makinde: On steady MHD flow and heat transfer due to a rotating disk in a porous medium with Ohmic heating and viscous dissipation. Int. J. Num. Methods for Heat & Fluid Flow-Vol. 20, No. 3, pp.269-285, (2010).

DOI: 10.1108/09615531011024039

Google Scholar

[35] F.Mebarek-Oudina, Numerical Modeling of MHD Stability in a Cylindrical Configuration. Journal of the Franklin Institute, vol. 351, issue 2, p.667–681, (2014).

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[36] F.Mebarek-Oudina, R.Bessaih, Oscillatory Magnetohydrodynamic Natural Convection of Liquid Metal between Vertical Coaxial Cylinders, J. of Applied Fluid Mechanics, vol. 9, no. 4, pp.1655-1665, (2016).

DOI: 10.18869/acadpub.jafm.68.235.24813

Google Scholar

[37] F.Mebarek-Oudina, Numerical Modeling of the Hydrodynamic Stability in Vertical annulus with Heat Source of different Lengths, Engineering Science and Technology, an International Journal, vol. 20, no. 4, pp.1324-1333, (2017).

DOI: 10.1016/j.jestch.2017.08.003

Google Scholar