Preparation and Flammability Properties of Polyethylene/Organoclay Nanocomposites

Article Preview

Abstract:

Polyethylene (PE) nanocomposites were prepared by melt intercalation, in order to evaluate the flame retardant effect of this material. For the development of nanocomposites were used the montmorillonite clay (MMT), organoclay (OMMT) and flame retardant product (FRP) with the percentage of 1, 3, 6 and 9 wt%. Grafted polyethylene with maleic anhydride (PE-g-MA) was used as a compatibilizer of the systems. PE and its systems were evaluated: XRD, TEM, TG and flammability (UL94HB, oxygen index (LOI) and cone calorimetry). The X-ray diffraction showed a partial intercalation and exfoliation as well as formation of microcomposite. The phase morphology of the systems was observed by TEM that it showed that the system with 1% OMMT clay presented a predominance of exfoliation. Already the system with 3% OMMT showed partial exfoliation and this exfoliation reduced as the clay content increased. By TG it was seen that MMT, OMMT and FRP acted improving the thermal behavior of the nanocomposites compared to PE matrix. The results obtained for the oxygen index showed that both PE and its systems presented flame retardancy behavior. By means of the horizontal flammability tests, it was found that the presence of 1% MMT clay reduced 25% the flammability of PE. By cone calorimetry it was found that the system that contains 9% of OMMT clay decreased by about 33% the flammability of PE.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 20)

Pages:

92-105

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.P. Giannelis, Polymer layered nanocomposites. Advanc. Mater., 8(1) (1996) 29-35.

Google Scholar

[2] J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stability. Chem. Mater. 13(12) (2001) 4649-4654.

DOI: 10.1021/cm010451y

Google Scholar

[3] A. Linhares, J.C. Canalda, M.E. Cagiao, M.C.G. Gutierrez, A. Nogales, I.M. Gullón, J. Vera & T.A. Ezquerra, Broad-Band Electrical Conductivity of High Density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers. Macromol. 40 (19) (2007).

DOI: 10.1021/ma801410j

Google Scholar

[4] T.G. Gopakumar, D.J.Y.S. Pagé, Polyprolylene/graphite nanocomposites by thermo-kinetic mixing, Polym. Eng. Sci., 44 (6) (2004) 1162-1169.

DOI: 10.1002/pen.20109

Google Scholar

[5] A. Okada, Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuki, S. Sugiyama, T. Kurauchi & O. Kamigaito, Patent Number: US 4.739.007 (1988). Composite material and process to obtain the same.

Google Scholar

[6] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi & O. Kamigaito, Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε- caprolactam. J. Mater. Res. 8 (5) (1993) 1174-1178.

DOI: 10.1557/jmr.1993.1174

Google Scholar

[7] Y. Wang, F.B. Chen, Y.C. Li, K.C. Wu, Melt processing of polypropylene/clay modified with maleated polypropylene compatibilizer. Compos.: Part b. 35 (2) (2004) 111-124.

DOI: 10.1016/s1359-8368(03)00049-0

Google Scholar

[8] S.V. de Oliveira, E.M. Araújo, C.M.C. Pereira, A.M.D. Leite, Polyethylene/bentonite clay nanocomposite with flame retardant properties.Polímeros, 27 (2017) 91-98. (In Portuguese).

Google Scholar

[9] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, One-pot synthesis of nylon 6-clay hybrid. J. Polym. Sci. 31 (7) (1993) 1755-1758.

DOI: 10.1002/pola.1993.080310714

Google Scholar

[10] S. Varghese, K.G. Gatos, A. Apostolova, J. Karger-Kocsis, Morphology and mechanical properties of layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. J. App. Polym. Sci. 92 (1) (2004) 543-551.

DOI: 10.1002/app.20036

Google Scholar

[11] J.W. Gilman, C.L. Jackson, A.B. Morgan, R.J. Harris, E. Manias, E.P. Giannelis, M. Wuthenow, D. Hilton & S.H. Phillips, Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater., 12 (7) (2000).

DOI: 10.1021/cm0001760

Google Scholar

[12] C. Canaud, L.L.Y. Visconte, R.C.R. Nunes, Mechanical and flammability properties of EPDM (ethylene-propylene terpolymer) rubber compositions filled with carbon black and aluminum hydroxide. Polímeros, 11 (1) (2004) 35-40.

Google Scholar

[13] S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers. Elsevier. (2005).

Google Scholar

[14] L.B. Pierella, S. Renzini, O.A. Anunziata, Catalytic degradation of high density polyethylene over microporous and mesoporous materials. Microporous and Macroporous. Materials 81(1-3) (2005) 155-159.

DOI: 10.1016/j.micromeso.2004.11.015

Google Scholar

[15] S. Kahlow, Pirólise de Polipropileno Pós-Consumo Visando a Obtenção de Novos Produtos. (Dissertação de Mestrado), Universidade Tecnológica Federal do Paraná, Curitiba (2007).

DOI: 10.21041/conpat2019/v2pat140

Google Scholar

[16] BSEF. Bromine Science and Environmental Forum, Brussels, Belgium. (2000). Disponível em: http://www.ebfrip.org/download/weeepa.pdf. Acessada em Julho/(2010).

Google Scholar

[17] R. Barbosa, Estudo da modificação de argilas bentoníticas para aplicação em nanocompósito de polietileno.(Tese de Doutorado em Engenharia de Processos), Universidade Federal de Campina Grande, Campina Grande-PB (2009).

DOI: 10.14393/19834071.2015.30311

Google Scholar

[18] S.S. Ray, M. Okamoto, Polymer/ layered silicate nanocomposites: a review from preparation to processing. Progress Polym. Sci., 28(11) (2003) 1539-1641.

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[19] R. Barbosa, T.S. Alves, E.M. Araújo, T.J.A. Melo, G. Camino, A. Fina, E.N. Ito, Flammability and morphology of HDPE/clay nanocomposites. J. Therm. Anal. Calorim. 115 (2014) 627–634.

DOI: 10.1007/s10973-013-3310-1

Google Scholar

[20] E.M. Araújo, R. Barbosa, A.D. Oliveira, C.R.S. Morais, T.J.A. Mélo & A.G. Souza, Thermal and mechanical properties of PE/organoclay nanocomposites. J. Therm. Anal. Calorim. 87 (2007) 811-814.

DOI: 10.1007/s10973-006-7758-0

Google Scholar

[21] 19 UL-94: Test for Flammability of Plastic Materials for Parts in Devices and Appliances, Underwriters Laboratories Inc (UL) (2001).

Google Scholar

[22] J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polym., 42(3), (2001) 1083-1094.

DOI: 10.1016/s0032-3861(00)00380-3

Google Scholar

[23] Y.V. Kissin, H. A. Fruitwala, Analysis of polyolefins and olefin copolymers using Crystal technique: resolution of Crystal curves. J. Appl. Polym. Sci., 106(6) (2007) 3872-3883.

DOI: 10.1002/app.27090

Google Scholar

[24] J. Morawiec, A. Pawlak, M. Slouf, A. Galeski, E. Piorkowska, N. Krasnikowa, Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocompósitos. Europ. Polym. J. 41 (2005) 1115-1122.

DOI: 10.1016/j.eurpolymj.2004.11.011

Google Scholar

[25] Z. Zhao, T. Tang, Y. Qin, B. Huang. Effects of Surfactant Loadings on the Dispersion of Clays in Maleated Polypropylene. Langmuir. 19 (18) (2003) 7157-7159.

DOI: 10.1021/la034575w

Google Scholar

[26] M. Valera-Zaragoza, E. Ramirez-Vargas, F.J. Medellin-Rodríguez, B.M. Huerta-Martínez, Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites. Polym. Degrad. Stab. 91 (2006) 1319–1325.

DOI: 10.1016/j.polymdegradstab.2005.08.011

Google Scholar

[27] C.M.L. Preston, G. Amarasinghe, J.L. Hopewell, R.A. Shanks, Z. Mathys, Evaluation of polar ethylene copolymers of fire retardant nanocomposite matrices. Polym. Degrad. Stab. 84 (2004) 533-544.

DOI: 10.1016/j.polymdegradstab.2004.02.004

Google Scholar

[28] Y. Tang, Y. Hu, S.F. Wang, Z. Gui, Z. Chen, W.C. Fan, Preparation and flammability of ethylene-vinyl acetate copolymer/montmorillonite nanocomposites. Polym. Degrad. Stab. 78 (2002) 555-559.

DOI: 10.1016/s0141-3910(02)00231-8

Google Scholar

[29] M. Zanetti, L. Costa. Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polym., 45 (13) (2004) 4367-4373.

DOI: 10.1016/j.polymer.2004.04.043

Google Scholar

[30] Y. Peneva, E. Tashev, L. Minkova.Flammability, Micro hardness and transparency of nanocomposites based on functionalized polyethylenes. Europ. Polym. J., 42(10) (2006) 2228-2235.

DOI: 10.1016/j.eurpolymj.2006.06.027

Google Scholar

[31] J. Lenza, K. Merkel & H. Rydarowski. Comparison of the effect of montmorillonite, magnesium hydroxide and a mixture of both on the flammability properties and mechanism of charformation of HDPE composites. Polym. Degrad. and Stab. 97(12) (2012).

DOI: 10.1016/j.polymdegradstab.2012.07.010

Google Scholar

[32] R. Song, Z. Wang, B. Meng & T. Zhang. Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. J. App. Polym. Sci. 106(5) (2007) 3488-3494.

DOI: 10.1002/app.27033

Google Scholar

[33] T. S. Alves, R. Barbosa, L. H. Carvalho, E. L. Canedo, Flammability of polypropylene/organoclay nanocomposites, Polímeros. 24(3) (2014) 307-313. (In Portuguese).

Google Scholar

[34] M. Zanetti, G. Camino, P. Reichert, R. Mulhaupt, Thermal behaviour of Polymer nanocomposites poly(propylene) layered silicate nanocomposites. Macromol. Rapid Commun. 22 (2001) 176-180.

DOI: 10.1002/1521-3927(200102)22:3<176::aid-marc176>3.0.co;2-c

Google Scholar

[35] T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polym., 42 (2001) 9929-9940.

DOI: 10.1016/s0032-3861(01)00552-3

Google Scholar

[36] K.P. Pramoda, Z. Liu, C. He, H.J. Sue, Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym. Deg. Stab. 81 (2003) 47-56.

DOI: 10.1016/s0141-3910(03)00061-2

Google Scholar

[37] B.N. Jang, C.A. Wilkie, The effect of clay on the thermal degradation of polyamide 6/clay nanocomposites. Polym., 46 (2005) 3264-3274.

DOI: 10.1016/j.polymer.2005.02.078

Google Scholar