Preparation and Flammability Properties of Polyethylene/Organoclay Nanocomposites

Abstract:

Article Preview

Polyethylene (PE) nanocomposites were prepared by melt intercalation, in order to evaluate the flame retardant effect of this material. For the development of nanocomposites were used the montmorillonite clay (MMT), organoclay (OMMT) and flame retardant product (FRP) with the percentage of 1, 3, 6 and 9 wt%. Grafted polyethylene with maleic anhydride (PE-g-MA) was used as a compatibilizer of the systems. PE and its systems were evaluated: XRD, TEM, TG and flammability (UL94HB, oxygen index (LOI) and cone calorimetry). The X-ray diffraction showed a partial intercalation and exfoliation as well as formation of microcomposite. The phase morphology of the systems was observed by TEM that it showed that the system with 1% OMMT clay presented a predominance of exfoliation. Already the system with 3% OMMT showed partial exfoliation and this exfoliation reduced as the clay content increased. By TG it was seen that MMT, OMMT and FRP acted improving the thermal behavior of the nanocomposites compared to PE matrix. The results obtained for the oxygen index showed that both PE and its systems presented flame retardancy behavior. By means of the horizontal flammability tests, it was found that the presence of 1% MMT clay reduced 25% the flammability of PE. By cone calorimetry it was found that the system that contains 9% of OMMT clay decreased by about 33% the flammability of PE.

Info:

Periodical:

Diffusion Foundations (Volume 20)

Edited by:

João Delgado and A.G. Barbosa de Lima

Pages:

92-105

Citation:

S. V. de Oliveira et al., "Preparation and Flammability Properties of Polyethylene/Organoclay Nanocomposites", Diffusion Foundations, Vol. 20, pp. 92-105, 2019

Online since:

December 2018

Export:

Price:

$38.00

[1] E.P. Giannelis, Polymer layered nanocomposites. Advanc. Mater., 8(1) (1996) 29-35.

[2] J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stability. Chem. Mater. 13(12) (2001) 4649-4654.

DOI: https://doi.org/10.1021/cm010451y

[3] A. Linhares, J.C. Canalda, M.E. Cagiao, M.C.G. Gutierrez, A. Nogales, I.M. Gullón, J. Vera & T.A. Ezquerra, Broad-Band Electrical Conductivity of High Density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers. Macromol. 40 (19) (2007).

DOI: https://doi.org/10.1021/ma801410j

[4] T.G. Gopakumar, D.J.Y.S. Pagé, Polyprolylene/graphite nanocomposites by thermo-kinetic mixing, Polym. Eng. Sci., 44 (6) (2004) 1162-1169.

DOI: https://doi.org/10.1002/pen.20109

[5] A. Okada, Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuki, S. Sugiyama, T. Kurauchi & O. Kamigaito, Patent Number: US 4.739.007 (1988). Composite material and process to obtain the same.

[6] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi & O. Kamigaito, Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε- caprolactam. J. Mater. Res. 8 (5) (1993) 1174-1178.

DOI: https://doi.org/10.1557/jmr.1993.1174

[7] Y. Wang, F.B. Chen, Y.C. Li, K.C. Wu, Melt processing of polypropylene/clay modified with maleated polypropylene compatibilizer. Compos.: Part b. 35 (2) (2004) 111-124.

DOI: https://doi.org/10.1016/s1359-8368(03)00049-0

[8] S.V. de Oliveira, E.M. Araújo, C.M.C. Pereira, A.M.D. Leite, Polyethylene/bentonite clay nanocomposite with flame retardant properties.Polímeros, 27 (2017) 91-98. (In Portuguese).

[9] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, One-pot synthesis of nylon 6-clay hybrid. J. Polym. Sci. 31 (7) (1993) 1755-1758.

DOI: https://doi.org/10.1002/pola.1993.080310714

[10] S. Varghese, K.G. Gatos, A. Apostolova, J. Karger-Kocsis, Morphology and mechanical properties of layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. J. App. Polym. Sci. 92 (1) (2004) 543-551.

DOI: https://doi.org/10.1002/app.20036

[11] J.W. Gilman, C.L. Jackson, A.B. Morgan, R.J. Harris, E. Manias, E.P. Giannelis, M. Wuthenow, D. Hilton & S.H. Phillips, Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater., 12 (7) (2000).

DOI: https://doi.org/10.1021/cm0001760

[12] C. Canaud, L.L.Y. Visconte, R.C.R. Nunes, Mechanical and flammability properties of EPDM (ethylene-propylene terpolymer) rubber compositions filled with carbon black and aluminum hydroxide. Polímeros, 11 (1) (2004) 35-40.

[13] S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers. Elsevier. (2005).

[14] L.B. Pierella, S. Renzini, O.A. Anunziata, Catalytic degradation of high density polyethylene over microporous and mesoporous materials. Microporous and Macroporous. Materials 81(1-3) (2005) 155-159.

DOI: https://doi.org/10.1016/j.micromeso.2004.11.015

[15] S. Kahlow, Pirólise de Polipropileno Pós-Consumo Visando a Obtenção de Novos Produtos. (Dissertação de Mestrado), Universidade Tecnológica Federal do Paraná, Curitiba (2007).

[16] BSEF. Bromine Science and Environmental Forum, Brussels, Belgium. (2000). Disponível em: http://www.ebfrip.org/download/weeepa.pdf. Acessada em Julho/(2010).

[17] R. Barbosa, Estudo da modificação de argilas bentoníticas para aplicação em nanocompósito de polietileno.(Tese de Doutorado em Engenharia de Processos), Universidade Federal de Campina Grande, Campina Grande-PB (2009).

DOI: https://doi.org/10.14393/19834071.2015.30311

[18] S.S. Ray, M. Okamoto, Polymer/ layered silicate nanocomposites: a review from preparation to processing. Progress Polym. Sci., 28(11) (2003) 1539-1641.

DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002

[19] R. Barbosa, T.S. Alves, E.M. Araújo, T.J.A. Melo, G. Camino, A. Fina, E.N. Ito, Flammability and morphology of HDPE/clay nanocomposites. J. Therm. Anal. Calorim. 115 (2014) 627–634.

DOI: https://doi.org/10.1007/s10973-013-3310-1

[20] E.M. Araújo, R. Barbosa, A.D. Oliveira, C.R.S. Morais, T.J.A. Mélo & A.G. Souza, Thermal and mechanical properties of PE/organoclay nanocomposites. J. Therm. Anal. Calorim. 87 (2007) 811-814.

DOI: https://doi.org/10.1007/s10973-006-7758-0

[21] 19 UL-94: Test for Flammability of Plastic Materials for Parts in Devices and Appliances, Underwriters Laboratories Inc (UL) (2001).

[22] J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polym., 42(3), (2001) 1083-1094.

[23] Y.V. Kissin, H. A. Fruitwala, Analysis of polyolefins and olefin copolymers using Crystal technique: resolution of Crystal curves. J. Appl. Polym. Sci., 106(6) (2007) 3872-3883.

DOI: https://doi.org/10.1002/app.27090

[24] J. Morawiec, A. Pawlak, M. Slouf, A. Galeski, E. Piorkowska, N. Krasnikowa, Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocompósitos. Europ. Polym. J. 41 (2005) 1115-1122.

DOI: https://doi.org/10.1016/j.eurpolymj.2004.11.011

[25] Z. Zhao, T. Tang, Y. Qin, B. Huang. Effects of Surfactant Loadings on the Dispersion of Clays in Maleated Polypropylene. Langmuir. 19 (18) (2003) 7157-7159.

DOI: https://doi.org/10.1021/la034575w

[26] M. Valera-Zaragoza, E. Ramirez-Vargas, F.J. Medellin-Rodríguez, B.M. Huerta-Martínez, Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites. Polym. Degrad. Stab. 91 (2006) 1319–1325.

DOI: https://doi.org/10.1016/j.polymdegradstab.2005.08.011

[27] C.M.L. Preston, G. Amarasinghe, J.L. Hopewell, R.A. Shanks, Z. Mathys, Evaluation of polar ethylene copolymers of fire retardant nanocomposite matrices. Polym. Degrad. Stab. 84 (2004) 533-544.

DOI: https://doi.org/10.1016/j.polymdegradstab.2004.02.004

[28] Y. Tang, Y. Hu, S.F. Wang, Z. Gui, Z. Chen, W.C. Fan, Preparation and flammability of ethylene-vinyl acetate copolymer/montmorillonite nanocomposites. Polym. Degrad. Stab. 78 (2002) 555-559.

DOI: https://doi.org/10.1016/s0141-3910(02)00231-8

[29] M. Zanetti, L. Costa. Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polym., 45 (13) (2004) 4367-4373.

DOI: https://doi.org/10.1016/j.polymer.2004.04.043

[30] Y. Peneva, E. Tashev, L. Minkova.Flammability, Micro hardness and transparency of nanocomposites based on functionalized polyethylenes. Europ. Polym. J., 42(10) (2006) 2228-2235.

DOI: https://doi.org/10.1016/j.eurpolymj.2006.06.027

[31] J. Lenza, K. Merkel & H. Rydarowski. Comparison of the effect of montmorillonite, magnesium hydroxide and a mixture of both on the flammability properties and mechanism of charformation of HDPE composites. Polym. Degrad. and Stab. 97(12) (2012).

DOI: https://doi.org/10.1016/j.polymdegradstab.2012.07.010

[32] R. Song, Z. Wang, B. Meng & T. Zhang. Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. J. App. Polym. Sci. 106(5) (2007) 3488-3494.

DOI: https://doi.org/10.1002/app.27033

[33] T. S. Alves, R. Barbosa, L. H. Carvalho, E. L. Canedo, Flammability of polypropylene/organoclay nanocomposites, Polímeros. 24(3) (2014) 307-313. (In Portuguese).

[34] M. Zanetti, G. Camino, P. Reichert, R. Mulhaupt, Thermal behaviour of Polymer nanocomposites poly(propylene) layered silicate nanocomposites. Macromol. Rapid Commun. 22 (2001) 176-180.

DOI: https://doi.org/10.1002/1521-3927(200102)22:3<176::aid-marc176>3.0.co;2-c

[35] T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polym., 42 (2001) 9929-9940.

DOI: https://doi.org/10.1016/s0032-3861(01)00552-3

[36] K.P. Pramoda, Z. Liu, C. He, H.J. Sue, Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym. Deg. Stab. 81 (2003) 47-56.

DOI: https://doi.org/10.1016/s0141-3910(03)00061-2

[37] B.N. Jang, C.A. Wilkie, The effect of clay on the thermal degradation of polyamide 6/clay nanocomposites. Polym., 46 (2005) 3264-3274.

DOI: https://doi.org/10.1016/j.polymer.2005.02.078