Thermo-Fluid Dynamics Analysis of the Oil-Water Separation Using Ceramic Membrane

Article Preview

Abstract:

One of the main challenges related to the oil industry is the conscious disposal of effluents from the stages of oil exploration and production. The treatment of the water produced originated these processes has become a challenge for the sector. The membrane filtration technique emerges as an important tool in the treatment of these oily waters, due to their good characteristics, such as uniformity in permeate quality and long shelf life. In this work, a 2D mathematical model was developed, using computational fluid dynamics (CFD) as tool for the evaluation of the water-oil separation process in a tubular ceramic membrane. Linear momentum, energy, and mass conservation equations were used, which were solved using the commercial package ANSYS CFX® 15. The results obtained demonstrate that the developed model was able to predict the behavior of the water/oil separation process through the membrane, evidencing the influence of the oil particle size under the formation of the polarization layer by concentration, as well as, allowed to verify the importance of the temperature and the retention index of the solute under the permeation velocity and system performance.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 24)

Pages:

37-60

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Frederic,C.Guigui, M.Jacob, C.Machinal,A.Krifi,A. Line,Schmitz, P. Modelling of fluid flow distribution in multichannel ceramic membrane: Application to the filtration of produced water, Journal of Membrane Science. 567, 1 (2018) 290-302.

DOI: 10.1016/j.memsci.2018.09.021

Google Scholar

[2] A. dos S.Barbosa, A.dos S.Barbosa, T. L. A.Barbosa, M. G. F. Rodrigues, Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil-water separation, Separation and Purification Technology. 200(2018) 141-154.

DOI: 10.1016/j.seppur.2018.02.001

Google Scholar

[3] T.V. Mota, H.G. Alves, S.R. Farias Neto, A.G.B. Lima, Oily Water Treatment Using Ceramic Membrane in Presence of Swirling Flow Induced by a Tangential Inlet via CFD, Defect and Diffusion Forum. 348 (2014) 51-57.

DOI: 10.4028/www.scientific.net/ddf.348.51

Google Scholar

[4] H. L. F. Magalhães, A. G. B. Lima, S. R. Farias Neto, H.G. Alves, J. S. Souza, Produced water treatment by ceramic membrane: A numerical investigation by computational fluid dynamics, Advances in Mechanical Engineering. 9, 3(2017) 1-20.

DOI: 10.1177/1687814016688642

Google Scholar

[5] A. Agi, R. Junin, A.Y. M. Alqatta, A. Gbadamosi, A. Yahya, A. Abbas, Ultrasonic assisted ultrafiltration process for emulsification of oil field produced water treatment, Ultrasonics Sonochemistry.51 (2019) 214-222.

DOI: 10.1016/j.ultsonch.2018.10.023

Google Scholar

[6] H.Lotfiyan, F. Z.Ashtiani, A.Fouladitajar,S. B. Armand, Computational fluid dynamics modeling and experimental studies of oil-in-water emulsion microfiltration in a flat sheet membrane using Eulerian approach, Journal of Membrane Science. 472, 15 (2014) 1-9.

DOI: 10.1016/j.memsci.2014.08.036

Google Scholar

[7] D. A.Masciola, R. C.Viadero Jr, B. E. Reed, Tubular ultrafiltration flux prediction for oil-in-water emulsions: analysis of series resistances, Journal of Membrane Science. 184 (2001)197–208.

DOI: 10.1016/s0376-7388(00)00625-6

Google Scholar

[8] M.Zare, F. Z.Ashtiani, A. Fouladitajar, CFD modeling and simulation of concentration polarization in microfiltration of oil-water emulsions; Application of an Eulerian multiphase model, Desalination. 324(2013) 37-47.

DOI: 10.1016/j.desal.2013.05.022

Google Scholar

[9] K.Damak, A.Ayadi, B.Zeghmati, P.Schmitz, New Navier-Stokes and Darcy's law combined model for fluid flow in cross-flow filtration tubular membranes, Desalination. 161, 1(2004) 67-77.

DOI: 10.1016/s0011-9164(04)90041-0

Google Scholar

[10] H. L. F. Magalhães, A. G. B. Lima, S. R. de Farias Neto, A. F. de Almeida, T. H. F. de Andrade, V. A. A. Brandão,Ceramic Membranes: Theory and Engineering Applications, Advanced Structured Materials. 1ed.Heidelberg (Germany): Springer International Publishing, vol. 93, 2018, pp.111-137.

DOI: 10.1007/978-3-319-91062-8_4

Google Scholar

[11] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A.S. Lavine,Fundamentals of heat and mass transfer, 7st Ed., Acid-free paper, United States of America, (2007).

Google Scholar

[12] V. S. Minnikanti, S. Dasgupta, S. De, Prediction of mass transfer coefficient with suction for turbulent flow in cross flow ultrafiltration, Journal of Membrane Science. 154, 2(1999) 227-239.

DOI: 10.1016/s0376-7388(98)00371-8

Google Scholar

[13] K. Damak, A. Ayadi, B. Zeghmati, P. Schmitz, Concentration polarisation in tubular membranes - a numerical approach, Desalination.171, 2 (2004) 139-153.

DOI: 10.1016/j.desal.2004.05.002

Google Scholar

[14] A. K. Coker, Ludwig's applied process design for chemical and petrochemical plant, 4ª edition. United States: Gulf Professional Publishing, vol. 2, (2010).

Google Scholar

[15] M. L. V. Ramires, C. A. N. Castro, A. Nagashima, M. J. Assael, W. A. Wakeham, Standard reference data for the thermal conductivity of water, Journal of Physics and Thermophysics. 33, 3(1977) 925-929.

Google Scholar

[16] A. L. Cunha, Treatment of effluents from the petroleum industry via ceramic membranes: Modeling and simulation, Doctoral Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil, 201p., (2014). (In Portuguese).

DOI: 10.21475/ajcs.2016.10.10.p7455

Google Scholar

[17] K. Damak, A. Ayadi, P. Schmitz, B. Zeghmati, Modeling of cross-flow membrane separation processes under laminar flow conditions in tubular membrane, Desalination. 168 (2004) 231-239.

DOI: 10.1016/j.desal.2004.07.003

Google Scholar