[1]
M. Saidi, R. Maddahian, B. Farhanieh, H. Afshin, Modeling of flow field and separation efficiency of a deoiling hydrocyclone using large eddy simulation. International Journal of Mineral Processing, 112(113) (2012) 84-93. https://doi.org/10.1016/j.minpro.2012.06.002.
DOI: 10.1016/j.minpro.2012.06.002
Google Scholar
[2]
J.V.B. Alves, Hydrocyclone for the Separation of Residual Water Oil in Refineries. (Master Dissertationin Chemical Engineering) Federal University of Rio de Janeiro, Brazil (2012). http://186.202.79.107/download/separacao-do-oleo-residual-de-agua-em-refinarias.pdf. Accessed on: January 25, 2018. (In Portuguese).
Google Scholar
[3]
O. J. Soccol, Construction and evaluation of hydrocyclone for pre-filtration of irrigation water. School of Agriculture, University of São Paulo, Brazil (2003). (In Portuguese).
Google Scholar
[4]
S. Fu, Y. Fang, H. Yuan, W. Tan, Y. Dong, Effect of the medium's density on the hydrocyclonic separation of waste plastics with different densities. Waste Management,67 (2017) 27–31.
DOI: 10.1016/j.wasman.2017.05.019
Google Scholar
[5]
Svarovsky, L.Solid-Liquid Separation, Chemical Engineering Series, 4º ed.,Butterworths, London (2000).
Google Scholar
[6]
C.A.C. Moraes, L. P. M. Marins, D. C. de Melo, F. S. da Silva, J. A. A. Oliveira Jr., M. A. de Souza, L. F. Barca, A. M. R. F. de Souza, C. S. de Almeida. Development of hydrocyclones for high, medium and low oil contents. Oil Production Technical Bulletin.3(2) (2009) 259-287. (In Portuguese).
Google Scholar
[7]
D.O. Silva, L.G.M. Vieira, F.S. Lobato, M.A.S. Barrozo, Optimization of the design and performance of hydrocyclones by Differential Evolution technique, Chemical Engineering and Processing:Process Intensification,61(2012)1-7 https://doi.org/10.1016/j.cep.2012.07.002.
DOI: 10.1016/j.cep.2012.07.002
Google Scholar
[8]
K.J. Hwang, Y. W. Hwang, H. Yoshida, Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics. Chemical Engineering Science,85 (2013) 62-68. https://doi.org/10.1016/j.ces.2011.12.046.
DOI: 10.1016/j.ces.2011.12.046
Google Scholar
[9]
L. Zhang, L. Wei, B. H. Chang, J. L. Xing, K. Jia,CFD numerical simulation of Archimedes spiral inlet hydrocyclone. IOP Conference Series: Materials Science and Engineering.(2013) https://iopscience.iop.org/article/10.1088/1757-899X/52/7/072021/meta.
DOI: 10.1088/1757-899x/52/7/072021
Google Scholar
[10]
C. Zhang, D. Wei, B. Cui, T. Li, N. Luo, Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet. Powder Technology,30 (2017) 156–165. https://doi.org/10.1016/j.powtec.2016.10.002.
DOI: 10.1016/j.powtec.2016.10.002
Google Scholar
[11]
F. He, Y. Zhang, J. Wang, Q. Yang, H. Wang, Y. Tan, Flow patterns in mini-hydrocyclones with different vortex finder depths. Chemical Engineering and Technology,36(11) (2013) 1935–1942.
DOI: 10.1002/ceat.201300204
Google Scholar
[12]
M.Ghodrat, S.B. Kuang, A.B.Yu, A.Vince, G.D. Barnett, P.J. Barnett, Numerical analysis of hydrocyclones with different conical section designs. Minerals Engineering, 62 (2014) 74–84. https://doi.org/10.1016/j.mineng.2013.12.003.
DOI: 10.1016/j.mineng.2013.12.003
Google Scholar
[13]
L.G.M. Vieira, M. A. S. Barrozo, Effect of vortex finder diameter on the performance of a novel hydrocyclone separator. Minerals Engineering, 57 (2014) 50–56. https://doi.org/10.1016/j.mineng.2013.11.014.
DOI: 10.1016/j.mineng.2013.11.014
Google Scholar
[14]
K.J. Hwang, S. P. Chou, Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone. Separation and Purification Technology,172 (2017) 76–84. https://doi.org/10.1016/j.seppur.2016.08.005.
DOI: 10.1016/j.seppur.2016.08.005
Google Scholar
[15]
B. Cui, C. Zhang, D. Wei, S. Lu, Y. Feng, Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters. Powder Technology,322 (2017) 114–123. https://doi.org/10.1016/j.powtec.2017.09.010.
DOI: 10.1016/j.powtec.2017.09.010
Google Scholar
[16]
M.Ghodrat, S.B. Kuang, A.B.Yu, A.Vince, G.D. Barnett, P.J. Barnett, Numerical analysis of hydrocyclones with different vortex finder configurations. Minerals Engineering,63 (2014) 125–138. https://doi.org/10.1016/j.mineng.2014.02.003.
DOI: 10.1016/j.mineng.2014.02.003
Google Scholar
[17]
S. M. Gonçalves, Effect of solids concentration and operational variables on the performance of a concentrating hydrocyclone. Master Dissertation in Chemical Engineering. Federal University of Uberlândia, Brazil (2016). (In Portuguese) https://repositorio.ufu.br/bitstream/123456789/17803/1/EfeitoConcentra% C3% A7% C3% A3oSolidos.pdf. Accessed on: January 25, (2018).
Google Scholar
[18]
R.K. Dubey, E. Climent, C. Banerjee, A.K. Majumder, Performance monitoring of a hydrocyclone based on underflow discharge angle. International Journal of Mineral Processing,154 (2016) 41–52. https://doi.org/10.1016/j.minpro.2016.07.002.
DOI: 10.1016/j.minpro.2016.07.002
Google Scholar
[19]
L. Ni, J. Tian, J. Zhao, Experimental study of the effect of underflow pipe diameter on separation performance of a novel de-foulant hydrocyclone with continuous underflow and reflux function. Separation and Purification Technology, 171, (2016) 270–279. https://doi.org/10.1016/j.seppur.2016.07.047.
DOI: 10.1016/j.seppur.2016.07.047
Google Scholar
[20]
K.W. Chu, B. Wang, A. B. Yu, A. Vince, Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of vortex finder outlet pressure. Minerals Engineering, 31 (2012) 46–58. https://doi.org/10.1016/j.mineng.2011.11.011.
DOI: 10.1016/j.mineng.2011.11.011
Google Scholar
[21]
K. Kashiwaya, T. Noumachi, N. Hiroyoshi, M. Ito, M. Tsunekawa, Effect of particle shape on hydrocyclone classification. Powder Technology, 226 (2012) 147–156 https://doi.org/10.1016/j.powtec.2012.04.036.
DOI: 10.1016/j.powtec.2012.04.036
Google Scholar
[22]
S.B. Kuang, K.W. Chu, A.B. Yu, A. Vince, Numerical study of liquid–gas–solid flow in classifying hydrocyclones: Effect of feed solids concentration. Minerals Engineering, 31 (2012) 17-31 http://dx.doi.org/10.1016/j.mineng.2012.01.003.
DOI: 10.1016/j.mineng.2012.01.003
Google Scholar
[23]
S.M. Gonçalves, M. A. S. Barrozo, L. G. M. Vieira, Effects of Solids Concentration and Underflow Diameter on the Performance of a Newly Designed Hydrocyclone. Chemical Engineering and Technology, 40(10) (2017) 1750–1757. https://doi.org/10.1002/ceat.201600496.
DOI: 10.1002/ceat.201600496
Google Scholar
[24]
M. Ghadirian, R. E. Hayes, J. Mmbaga, A. Afacan, Z. Xu, On the Simulation ofHydrocyclonesusing CFD, The Canadian Journal of Chemical Engineering, 91(5), 950-958 (2012).DOI 10.1002/cjce.21705.
DOI: 10.1002/cjce.21705
Google Scholar
[25]
T.R. Vakamalla, K. S. Kumbhar, R. Gujjula, N. Mangadoddy, Computational and experimental study of the effect of inclination on hydrocyclone performance. Separation and Purification Technology, 138 (2014) 104–117. https://doi.org/10.1016/j.seppur.2014.10.013.
DOI: 10.1016/j.seppur.2014.10.013
Google Scholar
[26]
D. Winfield, M. Cross, N. Croft, D. Paddison, I. Craig, Performance comparison of a single and triple tangential inlet gas separation cyclone:A CFD Study, Powder Technology, 235 (2013) 520-531. https://doi.org/10.1016/j.powtec.2012.10.026.
DOI: 10.1016/j.powtec.2012.10.026
Google Scholar
[27]
Y.R. Murthy, K. U. Bhaskar, Parametric CFD studies on hydrocyclone. Powder Technology, 230 (2012) 36-47. https://doi.org/10.1016/j.powtec.2012.06.048.
DOI: 10.1016/j.powtec.2012.06.048
Google Scholar
[28]
Y. Xu, X. Song, Z. Sun, G. Lu, P. Li, J. Yu, Simulation analysis of multiphase flow and performance of hydrocyclones at different atmospheric pressures. Industrial and Engineering Chemistry Research, 51(1) (2012) 443–453.
DOI: 10.1021/ie201147e
Google Scholar
[29]
S. Swain, S. Mohanty, A 3-dimensional Eulerian–Eulerian CFD simulation of a hydrocyclone. Applied Mathematical Modelling, 37 (2013) 2921–2932. https://doi.org/10.1016/j.apm.2012.06.007.
DOI: 10.1016/j.apm.2012.06.007
Google Scholar
[30]
ANSYS 18.0. user guide (2018). https://ansyshelp.ansys.com/.
Google Scholar
[31]
S.A. Morsi, A.J. Alexander, An investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mec., 55(2) (1972) 193-208.https://doi.org/10.1017/S0022112072001806.
DOI: 10.1017/s0022112072001806
Google Scholar
[32]
L. Svarovsky, Solid-Liquid Separation, Chemical Engineering Series, 2nd ed., Butterworths, London (1981).
Google Scholar
[33]
K. Heiskanen, Particle Classification. Chapman & Hall, London, (1993).
Google Scholar
[34]
J.T. Nascimento, Use of CFD in the Optimization of Geometric Proportions of a Hydrocyclone for Oil / Water Separation. 61 p. Final Project: School of Chemistry / Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2008) (In Portuguese).
DOI: 10.15557/jou.2017.0044
Google Scholar
[35]
L.C. Almeida, Numerical simulation of water-oil separation in hydrocyclones for low oil fractions. Final Project: School of Chemistry / Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2009). (In Portuguese).
DOI: 10.23939/chcht03.01.053
Google Scholar
[36]
P.C. Tonin, Computational optimization of hydrocyclone in pressurized irrigation. Federal University of Campina Grande, Campina Grande, Brazil, Doctoral thesis in Agricultural Engineering, (2012), 92 p. (In Portuguese).
DOI: 10.21475/ajcs.18.12.05.pne747
Google Scholar