A Study of Fractional Relaxation Time Derivative on Blood Flow in Arteries with Magnetic and Thermal Radiation Effects

Article Preview

Abstract:

In this paper, a fractional relaxation model is studied to determine the effect of heat transfer and magnetic field on the blood flow. The flow is due to an oscillating periodic pressure gradient and body acceleration. We apply Laplace transform as well as finite Hankel transform to obtain the closed form solutions of the velocity and temperature distributions of the fractional time partial differential equations. Effect of the fluid flow parameters are shown graphically with changes in the ordinary model as well as the fractional parameters. The analysis shows that the fractional derivative is an excellent tool which gives remarkable change in controlling temperature and blood flow. The analysis depicts graphically, that in the presences of strong applied (exterior) magnetic field, reduces the temperature and blood flow velocities, which is appropriate to avoid tissues damage during treatment. In addition, it is seen that some of the aforementioned parameters influenced the fluid flow profiles in increasing and decreasing fashion which is interpreted as useful to the study.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 26)

Pages:

126-144

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Sun, Y. Zhang, B. D. Baleanu, W. Chen,Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, J. commun Nonl. Sci. Numer. Simula. 64(2018)213 -231.

DOI: 10.1016/j.cnsns.2018.04.019

Google Scholar

[2] N Sene, Stokes' first problem for heated flat plate with Atangana-Baleanu fractional derivative, J. Chaos, Solit. &Fract. Nonl. Sci. and noneq. and compl. Phe.117(2018)68 – 75.

DOI: 10.1016/j.chaos.2018.10.014

Google Scholar

[3] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonli. Sci. and Numer. Simul. 51(2017)141 – 159.

DOI: 10.1016/j.cnsns.2017.04.001

Google Scholar

[4] N.A. Shah, V. Dumitru, F. Constantin, Effect of fractional order and magnetic field on the blood flow in cylindrical domains, J. Magt. and Magn. Mat. 409(2016)10 - 19.

Google Scholar

[5] F. Ali, N. A. Sheikh, I. Khan, M. Saqib, Magnetic field effect on blood flow of casson fluid in axisymmetric cylindrical tube: A fractional model, J. Magt. Magn. Mat. 423(2017)327 -336.

DOI: 10.1016/j.jmmm.2016.09.125

Google Scholar

[6] R. Ganguly, A. Gaind, S. Sen, I. Puri, Analyzing ferrofluid transport for magnetic drug targeting, J. Magt. and Magn. Mat. 289 (2005)331-334.

DOI: 10.1016/j.jmmm.2004.11.094

Google Scholar

[7] M. Banerjee, A. Datta, R. Ganguly, Magnetic drug targeting in partly occluded blood vessels using magnetic microspheres. J. Nanotech. Eng. Med.1(4) (2010)1 -9.

DOI: 10.1115/1.4002418

Google Scholar

[8] S. Shaw, P. Murthy, Magnetic drug targeting in the permeable Blood Vessel---The Effect of Blood Rheology, J. Nanotech. Eng. Med.1(2) (2010)1-11.

Google Scholar

[9] C. B. Tabi, T. G. Motsumi, C. D. K. Bansi, A. Mohamadou, Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field, J. Commun. Nonl. Sci. Numer. Simul. 49(2017)1 – 8.

DOI: 10.1016/j.cnsns.2017.01.024

Google Scholar

[10] A. Ogulu, A. R. Bestman, Deep heat muscle treatment a mathematical model –I, Acta Phys. Hun. 73 (1993)17 - 27.

DOI: 10.1007/bf03054178

Google Scholar

[11] G. C. Shit, S. Majee, Computational modeling of MHD flow of blood and heat transfer enhancement in a slowly varying arterial segment, Internat. J. Heat and Fluid Flow. 70(2018)237 – 246.

DOI: 10.1016/j.ijheatfluidflow.2018.02.016

Google Scholar

[12] S. Sharma, U. Singh, V. K. Katiyar, Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube, J. Magt. Magn. Mat. 377(2015) 395- 401.

DOI: 10.1016/j.jmmm.2014.10.136

Google Scholar

[13] S. Majee, G. C. Shit, Numerical investigation of MHD flow of blood and heat transfer enhancement in arterial segment, J. Magt. Magn. Mat. 424(2017)137 – 147.

DOI: 10.1016/j.jmmm.2016.10.028

Google Scholar

[14] V.K. Sud, G. S. Sekhon, Analysis of blood flow through a model of the human arterial system under periodic body acceleration, J. Biomech. 19 (1986) 929 – 941.

DOI: 10.1016/0021-9290(86)90188-0

Google Scholar

[15] J. C. Mishra, B. K. Kar, Unsteady flow of blood through arteries in vibration environment, Math. Comput. Model 13(4) (1990)7-17.

Google Scholar

[16] D. S. Shankar, U. Lee, Nonlinear mathematical analysis for blood flow in constricted artery under periodic body acceleration, Commun. Nonl. Sci. Numer. Simul. 16 (11) (2011) 4390 –4402.

DOI: 10.1016/j.cnsns.2011.03.020

Google Scholar

[17] G. C. Shit, M. Roy, Pulsatile flow and heat transfer of a magneto-micro-polar fluid through a stenosed artery under the influence of body acceleration, J. Mech. Med. Biol. 11(3) (2011) 643-661.

DOI: 10.1142/s0219519411003909

Google Scholar

[18] S. U. Siddiqui, S. R. Shah Geeta, A biomechanical approach to study the effect of body acceleration and slip velocity through stenotic artery. J. Appl. Math. Comp. 261(2015) 148 – 155.

DOI: 10.1016/j.amc.2015.03.082

Google Scholar

[19] S. Singh, R. R. Shah, A numerical model for the effect of stenosis shape on blood flow through an artery using power-law fluid. Adv. Appl. Sci. Res 1(1) (2010)66 – 73.

Google Scholar

[20] S. R. Shah, An innovative solution for the problem of blood flow through stenosed artery using generalized Bingham plastic fluid model, IMPACT: IJRANSS 1(3) (2013)3551 – 3557.

Google Scholar

[21] C. D. K. Bansi, C. B. Tabi, T. G. Motsumi, A. Mohamadou, Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects, J. Magt. Magn. Mat. 456(2018)38-45.

DOI: 10.1016/j.jmmm.2018.01.079

Google Scholar

[22] D. Baleanu, O. Agrawal, Hamilton formalism within Caputo's derivative. C. J. Phys.56, (10-11) (2000)1087- 1092.

DOI: 10.1007/s10582-006-0406-x

Google Scholar

[23] Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178(2) (2006)527 – 533.

DOI: 10.1016/j.amc.2005.11.072

Google Scholar

[24] H. Stehfests, Algorithm 368: Numerical inversion of Laplace transform [D5],, Cmmun ACM, 13(1970) 47 – 49.

DOI: 10.1145/361953.361969

Google Scholar

[25] H. Stehfest, Remark on algorithm368: Numerical inversion of Laplace transforms,, Commun. ACM, 13 (1970)624-625.

DOI: 10.1145/355598.362787

Google Scholar

[26] T. Chinyoka, O. D. Makinde, Computational dynamics of arterial blood flow in the presence of magnetic field and thermal radiation therapy, Adv. Math. Phy. 2014, ID 915640, http: //dx.doi.org/10.1155/2014/915640.

DOI: 10.1155/2014/915640

Google Scholar