Convective Heat Transfer Analysis of Hydromagnetic Micropolar Fluid Flow Past an Inclined Nonlinear Stretching Sheet with Variable Thermo-Physical Properties

Article Preview

Abstract:

The current work examines mixed convection boundary layer flow and heat transfer attributes in hydromagnetic micropolar fluid past a heated inclined sheet which stretches nonlinearly along the direction of flow. The impact of variable thermo-physical characteristics of the fluid together with the influence of magnetic field, thermal radiation and viscous dissipation are also checked on the flow field. The modelled governing equations are translated from partial to ordinary differential equations via relevant similarity transformations and the resulting equations are subsequently solved numerically by means of shooting techniques in company with Runge-Kutta integration algorithms. The reactions of the skin friction coefficient, Nusselt number, dimensionless velocity as well as temperature to variations in the emerging controlling parameters are illustrated through different graphs. In the limiting situations, the results obtained exhibit a strong relationship with the existing related works in literature. The facts emanated from this study also reveal that the thickness of the thermal boundary layer grows widely with a rise in the Eckert number and Biot number parameters whereas increasing the material (micropolar) and thermal conductivity parameters have opposite effects on the rate of heat transfer.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 26)

Pages:

63-77

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. El­Aziz:Journal of the Egyptian Mathematical Society Vol. 21 (2013),385­394.

Google Scholar

[2] R.S. Tripathy, G.C. Dash, S.R. Mishra and M.M. Hoque:Engineering Science and Technology, an International Journal Vol. 19 (2016),1573­1581.

Google Scholar

[3] A.C. Eringen: J. Math. Anal. Appl. Vol. 16 (1966), 1­18.

Google Scholar

[4] A.C. Eringen. Theory of thermo­microfluids, Journal of Mathematical Analysis and Applications. 38 (1972) 480­496.

Google Scholar

[5] M. Qasim, I. Khan and S. Shafle: Plos One Vol. 8 (2013) 1­6.

Google Scholar

[6] Md. Aurangzaib, S. Uddin, K. Bhattacharyya and S. Shafie: Propulsion and Power (2016) 1­8.

Google Scholar

[7] T.S. Kumar, B.R. Kumar, O.D. Makinde and A.G.V. Kumar: Defect and Diffusion Forum Vol. 387 (2018) 78­90.

Google Scholar

[8] G. Lukaszewicz. Micropolar fluids: Theory and Applications (1st Ed.). Birkhauser, Boston, (1999).

Google Scholar

[9] Reena and U. S. Rana: Applications and Applied Mathematics: An International Journal Vol. 4 (2009), 189­217.

Google Scholar

[10] O. D. Makinde, G.G. Kumar, S. Manjunatha and B.J. Gireesha:Defect and Diffusion Forum Vol. 378 (2017), 125­136.

Google Scholar

[11] B. C. Sakiadis A.I.Ch.E.J Vol. 7 (1961), 221­225.

Google Scholar

[12] L. J. Crane: Communicatios Breves Vol. 21 (1970), 645­647.

Google Scholar

[13] N. Afzal: Int. J. Heat Mass Transfer Vol. 36 (1992), 1126­1131.

Google Scholar

[14] P.S. Gupta and A.S. Gupta: Can. J. Chem. Eng Vol. 55 (1977), 744­746.[15] B. K. Dutta and C. Indien: Warme and Stoffubertragung Vol. 23 (1988), 35­37.

Google Scholar

[16] A. Ishak: Applied Mathematics and Computation Vol. 217 (2010), 837­842.

Google Scholar

[17] E.M.A. Elbashbeshy, D.M. Yassmin and A.A. Dalla: African Journal of Mathematics and Com­ puter Science Research Vol. 3 (2010), 68­75.

Google Scholar

[18] O.D. Makinde and W. M. Charles: Appl. Comput. Math Vol. 9 (2010), 243­251.

Google Scholar

[19] O.D. Makinde, Z.H. Khan, R. Ahmad and W.A. Khan: Physics of Fluids Vol. 30 (2018), 1­8.

Google Scholar

[20] A. Aziz: Commun Nonlinear Simulat. 14 (2010), 1064­1068.

Google Scholar

[21] S. Mukhopadhyay: Meccanica Vol. 48 (2013), 1717­1730.

Google Scholar

[22] I. Ibrahim and S. M. Suneetha:Int. J. Curr. Res. Aca. Rev Vol. 2 (2014), 89­100.

Google Scholar

[23] E. O. Fatunmbi and A. Adeniyan: Journal of Advances in Mathematics and Computer Science Vol. 26 (2018), 1­19.

Google Scholar

[24] A.M. Salem:Mathematical Problems in Engineering (2013), 1­10.

Google Scholar

[25] K. Das, S. Jana and P.K. Kundu:Alexandria Engineering Journal (2015), 35­ 44.

Google Scholar

[26] M.S. Tshehla, O.D. Makinde and G.E. Okecha:Research and Essays Vol. 5 (2010), 3730­3741.

Google Scholar

[27] A. Postelnicu, T. Grosan and I. Pop:Mech Res Commun Vol. 28 (2001), 331­337.

Google Scholar

[28] P.M. Thakur and G. Hazarika:International Journal of Scientific and Innovative Mathematical Research Vol. 2 (2014), 554­566.

Google Scholar

[29] S. Jana and K. Das:Italian Journal of Pure and Applied Mathematics Vol. 34 (2015), 20­44.

Google Scholar

[30] T.E. Akinbobola and S.S. Okoya:Journal of Nigeria Mathematical Society Vol. 34 (2015),331­ 342.

Google Scholar

[31] E.O. Fatunmbi and O.J. Fenuga:International Journal of Mathematical Analysis and Optimiza­ tion: Theory and Applications (2017), 211­ 232.

Google Scholar

[32] M. Waqas, M. Farooq, M.J. Khan, A. Alsaedi, T. Hayat and T. Yasmeen:International Journal of Heat and Mass Transfer Vol. 102 (2016), 766­772.

Google Scholar

[33] O.D. Makinde:International Journal of the Physical Sciences Vol. 5 (2010), 700­710.

Google Scholar

[34] M.H. Yazdi, S. Abdulaah, I. Hashim and K. Sopian:Energies Vol. 4 (2011), 2273­2294.

Google Scholar

[35] G. Ahmadi:Int. J. Engng. Sci. Vol. 14 (1976), 639­646.

Google Scholar

[36] S,K. Jena and M.N. Mathur:Int. J. Eng. Sci. Vol. 19 (1981), 1431­1439.

Google Scholar

[37] J. Peddieson:Int. J. Eng. Sci. Vol. 10 (1972), 23­32.

Google Scholar

[38] K. Kumari: Int. Comm. Heat Mass Transfer Vo. 28 (2001), 723­732.[39] K.E. Chin, R. Nazar, N.M. Arifin and I. Pop:International Communications in Heat and Mass Transfer Vol. 34 (2007), 464­473.

DOI: 10.1016/j.icheatmasstransfer.2007.01.002

Google Scholar

[40] O.D. Makinde:Entropy Vol. 13 (2011), 1446­1464.

Google Scholar

[41] D. Knezevic and V. Savic:Facta Universitis Vol. 4 (2006), 27­34.

Google Scholar

[42] R. Keimanesh, C. Aghanajafi:Tehniki Vjesnik Vol. 24 (2017), 371­378.

Google Scholar

[43] M.A.A. Mahmoud: Physica A. Vol. 375 (2012) 401­410.

Google Scholar

[44] T. Hayat, Z. Abbas and T, Javed:Physic Letter A Vol. 372 (2008), 637­647.

Google Scholar

[45] R. Cortell:Applied Mathematics and Computation Vol. 184 (2007), 864­873.

Google Scholar

[46] M.M. Rahman: Meccanica Vol. 46 (2011), 1127­1143.

Google Scholar