[1]
K. Hiemenz, Die Grenszchicht an einem in den gleichförmingen Flussigkeitsstorm eingetauchen geraden Kreiszylinder, Dinglers Polytech J. 326(1911) 321324.
Google Scholar
[2]
E. R. G. Eckert, Die berechnung des wärmeübergangs in der laminaren grenzschicht umströmter körper, VDI Forschungsheft, 416 (1942), 124.
DOI: 10.1002/zamm.19430230308
Google Scholar
[3]
D. W. Beard, K. Walters, J. G. Oldroyd, Elasticoviscous boundarylayer flows. I. Two dimen sional flow near a stagnation point, Mathematical Proceedings of the Cambridge Philosophical Society 60(3)(1964) 667674. https://doi.org/10.1017/s0305004100038147.
DOI: 10.1017/s0305004100038147
Google Scholar
[4]
L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21 (1970) 645655.
DOI: 10.1007/bf01587695
Google Scholar
[5]
R. Cortell, Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet, International Journal of NonLinear Mechanics 29(2) (1994) 155161.
DOI: 10.1016/0020-7462(94)90034-5
Google Scholar
[6]
T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper convected Maxwell fluid over a porous stretching plate, Physics Letters A 358(5) (2006) 396403.
DOI: 10.1016/j.physleta.2006.04.117
Google Scholar
[7]
M. Hussain, M. Ashraf, S. Nadeem, M. Khan, Radiation effects on thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet, Journal of the Franklin Institute, 350(1) (2013) 194210.
DOI: 10.1016/j.jfranklin.2012.07.005
Google Scholar
[8]
P. S. Gupta, A. S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, The Canadian Journal of Chemical Engineering 55 (1977) 744746.
DOI: 10.1002/cjce.5450550619
Google Scholar
[9]
E. Magyari, B. Keller, Heat and mass transfer in the boundary layers on an exponentially contin uous stretching surface, Journal of Physics D: Applied Physics 32 (1999) 577585.
DOI: 10.1088/0022-3727/32/5/012
Google Scholar
[10]
S. J. Khan, Boundary layer viscoelastic fluid flow over an exponentially stretching sheet, Ap plied Mechanics and Engineering 11(2) (2006) 321.
Google Scholar
[11]
M. Sajid, T. Hayat, Influence of thermal radiation on the boundary layer flow due to an expo nentially stretching sheet, International Communications in Heat and Mass Transfer 35(3) (2008) 347356.
DOI: 10.1016/j.icheatmasstransfer.2007.08.006
Google Scholar
[12]
S. Mukhopadhyay, MHD boundary layer flow and heat transfer over an exponentially stretching sheet embedded in a thermally stratified medium, Alexandria Engineering Journal 52 (2013) 259265.
DOI: 10.1016/j.aej.2013.02.003
Google Scholar
[13]
D. G. E. Grigoriadis, I. E. Sarris, S. C. Kassinos, MHD flow past a circular cylinder using the immersed boundary method. Computers & Fluids, 39(2) (2010) 345358.
DOI: 10.1016/j.compfluid.2009.09.012
Google Scholar
[14]
C. Y. Wang, Ng. ChiuOn, Slip flow due to a stretching cylinder, International Journal of Non Linear Mechanics 46(9) (2011) 11911194.[15] I. W. Seo, C. G. Song, Numerical simulation of laminar flow past a circular cylinder with slip conditions, International Journal for Numerical Methods in Fluids 68(12) (2012) 15381560.
DOI: 10.1002/fld.2542
Google Scholar
[16]
S. Mukhopadhyay, MHD boundary layer slip flow along a stretching cylinder, Ain Shams En gineering Journal 4 (2013) 317324.
DOI: 10.1016/j.asej.2012.07.003
Google Scholar
[17]
M. Tamoor, M. Waqas, M. Ijaz Khan, Ahmed Alsaedi, T. Hayat, Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results in physics 7 (2017) 498502.
DOI: 10.1016/j.rinp.2017.01.005
Google Scholar
[18]
M. Imtiaz, T. Hayat, S. Asad, A. Alsaedi, Flow due to a convectively heated cylinder with non linear thermal radiation, Neural Computing and Applications 30(4) (2018) 10951101.
DOI: 10.1007/s00521-016-2748-z
Google Scholar
[19]
C. Y. Wang, Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics 48(4) (1990) 601610.
Google Scholar
[20]
M. Miklavčič, C. Wang, Viscous flow due to a shrinking sheet, Quarterly of Applied Mathematics 64(2) (2006) 283290.
DOI: 10.1090/s0033-569x-06-01002-5
Google Scholar
[21]
T. Fang, Boundary layer flow over a shrinking sheet with powerlaw velocity, International Jour nal of Heat and Mass Transfer 51(2526)(2008) 58385843.
DOI: 10.1016/j.ijheatmasstransfer.2008.04.067
Google Scholar
[22]
T. Fan, H. Xu, I. Pop, Unsteady stagnation flow and heat transfer towards a shrinking sheet, International Communications in Heat and Mass Transfer 37(10) (2010) 14401446.
DOI: 10.1016/j.icheatmasstransfer.2010.08.002
Google Scholar
[23]
S. K. Nandy, Unsteady flow of Maxwell fluid in the presence of nanoparticles toward a permeable shrinking surface with Navier slip, Journal of the Taiwan Institute of Chemical Engineers 52 (2015) 2230.
DOI: 10.1016/j.jtice.2015.01.025
Google Scholar
[24]
J. H. Merkin, N. Najib, N. Bachok, A. Ishak, I. Pop, Stagnationpoint flow and heat transfer over an exponentially stretching/shrinking cylinder, Journal of the Taiwan Institute of Chemical Engineers 74 (2017) 6572.
DOI: 10.1016/j.jtice.2017.02.008
Google Scholar
[25]
P. D. Ariel, Hiemenz flow in hydromagnetics, Acta Mechanica 103(14) (1994) 3143.
DOI: 10.1007/bf01180216
Google Scholar
[26]
T. Hayat, T. Javed, Z. Abbas, MHD flow of a micropolar fluid near a stagnationpoint towards a nonlinear stretching surface, Nonlinear Analysis: Real World Applications 10(3) (2009) 1514 1526.
DOI: 10.1016/j.nonrwa.2008.01.019
Google Scholar
[27]
M. M. Rashidi, E. Erfani, A new analytical study of MHD stagnationpoint flow in porous media with heat transfer, Computers & Fluids 40(1) (2011) 172178.
DOI: 10.1016/j.compfluid.2010.08.021
Google Scholar
[28]
F. Mabood, W. A. Khan, Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium, Computers & Fluids 100 (2014) 7278.
DOI: 10.1016/j.compfluid.2014.05.009
Google Scholar
[29]
W. A. Khan, O. D. Makinde, Z. H. Khan, Nonaligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer 96 (2016) 525534.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.052
Google Scholar
[30]
W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, Journal of Aerospace Engineering 29(2) (2016) Article 04015037 (2016).
DOI: 10.1061/(asce)as.1943-5525.0000529
Google Scholar
[31]
W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a powerlaw nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institu tion of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 230(5) (2016) 345354.[32] R. B. Kudenatti, S. R. Kirsur, A. L. Nargund, N. M. Bujurke, Similarity solutions of the MHD boundary layer flow past a constant wedge within porous media, Mathematical Problems in En gineering 2017 (2017) 111.
DOI: 10.1155/2017/1428137
Google Scholar
[33]
S.R. Sayyed, B. B. Singh, Nasreen Bano, Radiative MHD StagnationPoint Flow with Heat Transfer Past a Permeable Stretching/Shrinking Sheet in a Porous Medium, Diffusion Founda tions, 11 (2017) 110128.
DOI: 10.4028/www.scientific.net/df.11.110
Google Scholar
[34]
O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231(4) (2017) 695-703.
DOI: 10.1177/0954408916629506
Google Scholar
[35]
K. U. Rehman, A. A. Khan, M. Y. Malik, O. D. Makinde, Thermophysical aspects of stagna tion point magnetonanofluid flow yields by an inclined stretching cylindrical surface: a non Newtonian fluid model. Journal of Braz. Soc. Mech. Sci. Eng. 39(9) (2017) 36693682.
DOI: 10.1007/s40430-017-0860-3
Google Scholar
[36]
H. Schlichting, K. Bussmann, Exakte Losungen fur die Laminare Grenzchicht mit Absaugung und Ausblasen, Schri Dtsch Akad Luftfahrtforschung Ser B 7(1943) 2569.
Google Scholar
[37]
P. D. Ariel, Stagnation point flow with suction: an approximate solution, Journal of Applied Mechanics 61(4)(1994) 976978. https://doi.org/10.1115/1.2901589.
DOI: 10.1115/1.2901589
Google Scholar
[38]
E. Magyari, I. Pop, B. Keller, Exact solutions for a longitudinal steady mixed convection flow over a permeable vertical thin cylinder in a porous medium, International journal of heat and mass transfer 48(16) (2005) 34353442.
DOI: 10.1016/j.ijheatmasstransfer.2005.01.043
Google Scholar
[39]
A. Ishak, R. Nazar, I. Pop, Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder, Applied Mathematical Modelling 32(10) (2008) 2059(2066).
DOI: 10.1016/j.apm.2007.06.036
Google Scholar
[40]
O. D. Makinde, T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection, Journal of Mechanical Science and Technology 27(5) (2013) 15571568.
DOI: 10.1007/s12206-013-0221-9
Google Scholar
[41]
S. Naramgari, C. Sulochana, MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection, Alexandria Engineering Journal 55(2) (2016) 819827.
DOI: 10.1016/j.aej.2016.02.001
Google Scholar
[42]
Y. Zhao, S. Liao, HAMbased package BVPh 2.0 for nonlinear boundary value problems, in: S. Liao (Ed.), Advances in Homotopy Analysis Method, World Scientific Press (2013).
DOI: 10.1142/9789814551250_0009
Google Scholar
[43]
S. J. Liao, Beyond Perturbation: An Introduction to Homotopy Analysis Method, Chapman & Hall, Boca Raton, FL (2003).
Google Scholar
[44]
S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Spring, Heidilberg (2012).
Google Scholar
[45]
S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University (1992).
Google Scholar
[46]
U. Farooq, Z. Lin, Nonlinear heat transfer in a twolayer flow with nanofluids by OHAM, J. Heat Transfer 136(2014) 0217021. http://dx.doi.org/10.1115/1.4025432.
DOI: 10.1115/1.4025432
Google Scholar
[47]
U. Farooq, T. Hayat, A. Alsaedi, S. Liao, Heat and mass transfer of twolayer flows of thirdgrade nanofluids in a vertical channel, Applied Mathematics and Computation 242(2014) 528540. https://doi.org/10.1016/j.amc.2014.05.126[48] U. Farooq, Y. L. Zhao, T. Hayat, A. Alsaedi, S. Liao, Application of the HAMbased Mathematica package BVPh 2.0 on MHD FalknerSkan flow of nanofluid, Computers and Fluids 111(2015) 6975.
DOI: 10.1016/j.compfluid.2015.01.005
Google Scholar
[49]
Nasreen Bano, B. B. Singh, S. R. Sayyed, Homotopy analysis for MHD Hiemenz flow in a porous medium with thermal radiation, Frontiers in Heat and Mass Transfer (FHMT) 10 (2018) 116.
DOI: 10.5098/hmt.10.14
Google Scholar
[50]
N. Bachok, A. Ishak, I. Pop, Boundary layer stagnationpoint flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid, International Journal of Heat and Mass Transfer 55(2526) (2012) 8122 8128.
DOI: 10.1016/j.ijheatmasstransfer.2012.08.051
Google Scholar
[51]
S. V. Subhashini, R. Sumathi, and E. Momoniat, Dual solutions of a mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids, Meccanica 49(10) (2014) 24672478.
DOI: 10.1007/s11012-014-0016-9
Google Scholar