MHD Stagnation-Point Flow and Heat Transfer over an Exponentially Stretching/Shrinking Vertical Permeable Cylinder

Article Preview

Abstract:

The present literature analyzes the MHD stagnation-point flow of an incompressible fluidover an exponentially stretching/shrinking permeable cylinder in the presence of a transverse magnetic field, and suction/injection. The governing partial differential equations in cylindrical form aretransformed into coupled ordinary differential equations (ODEs) using suitable similarity transformations. These ODEs are solved using optimal homotopy analysis method (OHAM) via Mathematicasoftware BVPh 2.0 package. The effects of various governing parameters such as curvature parameter, magnetic parameter, wall transpiration parameter, velocity ratio parameter and Prandtl number onvelocity and temperature profiles have also been examined graphically.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 26)

Pages:

23-38

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hiemenz, Die Grenszchicht an einem in den gleichförmingen Flussigkeitsstorm eingetauchen geraden Kreiszylinder, Dinglers Polytech J. 326(1911) 321­324.

Google Scholar

[2] E. R. G. Eckert, Die berechnung des wärmeübergangs in der laminaren grenzschicht umströmter körper, VDI Forschungsheft, 416 (1942), 1­24.

DOI: 10.1002/zamm.19430230308

Google Scholar

[3] D. W. Beard, K. Walters, J. G. Oldroyd, Elastico­viscous boundary­layer flows. I. Two dimen­ sional flow near a stagnation point, Mathematical Proceedings of the Cambridge Philosophical Society 60(3)(1964) 667­674. https://doi.org/10.1017/s0305004100038147.

DOI: 10.1017/s0305004100038147

Google Scholar

[4] L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21 (1970) 645­655.

DOI: 10.1007/bf01587695

Google Scholar

[5] R. Cortell, Similarity solutions for flow and heat transfer of a visco­elastic fluid over a stretching sheet, International Journal of Non­Linear Mechanics 29(2) (1994) 155­161.

DOI: 10.1016/0020-7462(94)90034-5

Google Scholar

[6] T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper convected Maxwell fluid over a porous stretching plate, Physics Letters A 358(5) (2006) 396­403.

DOI: 10.1016/j.physleta.2006.04.117

Google Scholar

[7] M. Hussain, M. Ashraf, S. Nadeem, M. Khan, Radiation effects on thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet, Journal of the Franklin Institute, 350(1) (2013) 194­210.

DOI: 10.1016/j.jfranklin.2012.07.005

Google Scholar

[8] P. S. Gupta, A. S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, The Canadian Journal of Chemical Engineering 55 (1977) 744­746.

DOI: 10.1002/cjce.5450550619

Google Scholar

[9] E. Magyari, B. Keller, Heat and mass transfer in the boundary layers on an exponentially contin­ uous stretching surface, Journal of Physics D: Applied Physics 32 (1999) 577­585.

DOI: 10.1088/0022-3727/32/5/012

Google Scholar

[10] S. J. Khan, Boundary layer visco­elastic fluid flow over an exponentially stretching sheet, Ap­ plied Mechanics and Engineering 11(2) (2006) 321.

Google Scholar

[11] M. Sajid, T. Hayat, Influence of thermal radiation on the boundary layer flow due to an expo­ nentially stretching sheet, International Communications in Heat and Mass Transfer 35(3) (2008) 347­356.

DOI: 10.1016/j.icheatmasstransfer.2007.08.006

Google Scholar

[12] S. Mukhopadhyay, MHD boundary layer flow and heat transfer over an exponentially stretching sheet embedded in a thermally stratified medium, Alexandria Engineering Journal 52 (2013) 259­265.

DOI: 10.1016/j.aej.2013.02.003

Google Scholar

[13] D. G. E. Grigoriadis, I. E. Sarris, S. C. Kassinos, MHD flow past a circular cylinder using the immersed boundary method. Computers & Fluids, 39(2) (2010) 345­358.

DOI: 10.1016/j.compfluid.2009.09.012

Google Scholar

[14] C. Y. Wang, Ng. Chiu­On, Slip flow due to a stretching cylinder, International Journal of Non­ Linear Mechanics 46(9) (2011) 1191­1194.[15] I. W. Seo, C. G. Song, Numerical simulation of laminar flow past a circular cylinder with slip conditions, International Journal for Numerical Methods in Fluids 68(12) (2012) 1538­1560.

DOI: 10.1002/fld.2542

Google Scholar

[16] S. Mukhopadhyay, MHD boundary layer slip flow along a stretching cylinder, Ain Shams En­ gineering Journal 4 (2013) 317­324.

DOI: 10.1016/j.asej.2012.07.003

Google Scholar

[17] M. Tamoor, M. Waqas, M. Ijaz Khan, Ahmed Alsaedi, T. Hayat, Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results in physics 7 (2017) 498­502.

DOI: 10.1016/j.rinp.2017.01.005

Google Scholar

[18] M. Imtiaz, T. Hayat, S. Asad, A. Alsaedi, Flow due to a convectively heated cylinder with non­ linear thermal radiation, Neural Computing and Applications 30(4) (2018) 1095­1101.

DOI: 10.1007/s00521-016-2748-z

Google Scholar

[19] C. Y. Wang, Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics 48(4) (1990) 601­610.

Google Scholar

[20] M. Miklavčič, C. Wang, Viscous flow due to a shrinking sheet, Quarterly of Applied Mathematics 64(2) (2006) 283­290.

DOI: 10.1090/s0033-569x-06-01002-5

Google Scholar

[21] T. Fang, Boundary layer flow over a shrinking sheet with power­law velocity, International Jour­ nal of Heat and Mass Transfer 51(25­26)(2008) 5838­5843.

DOI: 10.1016/j.ijheatmasstransfer.2008.04.067

Google Scholar

[22] T. Fan, H. Xu, I. Pop, Unsteady stagnation flow and heat transfer towards a shrinking sheet, International Communications in Heat and Mass Transfer 37(10) (2010) 1440­1446.

DOI: 10.1016/j.icheatmasstransfer.2010.08.002

Google Scholar

[23] S. K. Nandy, Unsteady flow of Maxwell fluid in the presence of nanoparticles toward a permeable shrinking surface with Navier slip, Journal of the Taiwan Institute of Chemical Engineers 52 (2015) 22­30.

DOI: 10.1016/j.jtice.2015.01.025

Google Scholar

[24] J. H. Merkin, N. Najib, N. Bachok, A. Ishak, I. Pop, Stagnation­point flow and heat transfer over an exponentially stretching/shrinking cylinder, Journal of the Taiwan Institute of Chemical Engineers 74 (2017) 65­72.

DOI: 10.1016/j.jtice.2017.02.008

Google Scholar

[25] P. D. Ariel, Hiemenz flow in hydromagnetics, Acta Mechanica 103(1­4) (1994) 31­43.

DOI: 10.1007/bf01180216

Google Scholar

[26] T. Hayat, T. Javed, Z. Abbas, MHD flow of a micropolar fluid near a stagnation­point towards a non­linear stretching surface, Nonlinear Analysis: Real World Applications 10(3) (2009) 1514­ 1526.

DOI: 10.1016/j.nonrwa.2008.01.019

Google Scholar

[27] M. M. Rashidi, E. Erfani, A new analytical study of MHD stagnation­point flow in porous media with heat transfer, Computers & Fluids 40(1) (2011) 172­178.

DOI: 10.1016/j.compfluid.2010.08.021

Google Scholar

[28] F. Mabood, W. A. Khan, Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium, Computers & Fluids 100 (2014) 72­78.

DOI: 10.1016/j.compfluid.2014.05.009

Google Scholar

[29] W. A. Khan, O. D. Makinde, Z. H. Khan, Non­aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer 96 (2016) 525­534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[30] W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, Journal of Aerospace Engineering 29(2) (2016) Article 04015037 (2016).

DOI: 10.1061/(asce)as.1943-5525.0000529

Google Scholar

[31] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power­law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institu­ tion of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 230(5) (2016) 345­354.[32] R. B. Kudenatti, S. R. Kirsur, A. L. Nargund, N. M. Bujurke, Similarity solutions of the MHD boundary layer flow past a constant wedge within porous media, Mathematical Problems in En­ gineering 2017 (2017) 1­11.

DOI: 10.1155/2017/1428137

Google Scholar

[33] S.R. Sayyed, B. B. Singh, Nasreen Bano, Radiative MHD Stagnation­Point Flow with Heat Transfer Past a Permeable Stretching/Shrinking Sheet in a Porous Medium, Diffusion Founda­ tions, 11 (2017) 110­128.

DOI: 10.4028/www.scientific.net/df.11.110

Google Scholar

[34] O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231(4) (2017) 695-703.

DOI: 10.1177/0954408916629506

Google Scholar

[35] K. U. Rehman, A. A. Khan, M. Y. Malik, O. D. Makinde, Thermophysical aspects of stagna­ tion point magnetonanofluid flow yields by an inclined stretching cylindrical surface: a non­ Newtonian fluid model. Journal of Braz. Soc. Mech. Sci. Eng. 39(9) (2017) 3669­3682.

DOI: 10.1007/s40430-017-0860-3

Google Scholar

[36] H. Schlichting, K. Bussmann, Exakte Losungen fur die Laminare Grenzchicht mit Absaugung und Ausblasen, Schri Dtsch Akad Luftfahrtforschung Ser B 7(1943) 25­69.

Google Scholar

[37] P. D. Ariel, Stagnation point flow with suction: an approximate solution, Journal of Applied Mechanics 61(4)(1994) 976­978. https://doi.org/10.1115/1.2901589.

DOI: 10.1115/1.2901589

Google Scholar

[38] E. Magyari, I. Pop, B. Keller, Exact solutions for a longitudinal steady mixed convection flow over a permeable vertical thin cylinder in a porous medium, International journal of heat and mass transfer 48(16) (2005) 3435­3442.

DOI: 10.1016/j.ijheatmasstransfer.2005.01.043

Google Scholar

[39] A. Ishak, R. Nazar, I. Pop, Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder, Applied Mathematical Modelling 32(10) (2008) 2059­(2066).

DOI: 10.1016/j.apm.2007.06.036

Google Scholar

[40] O. D. Makinde, T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection, Journal of Mechanical Science and Technology 27(5) (2013) 1557­1568.

DOI: 10.1007/s12206-013-0221-9

Google Scholar

[41] S. Naramgari, C. Sulochana, MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection, Alexandria Engineering Journal 55(2) (2016) 819­827.

DOI: 10.1016/j.aej.2016.02.001

Google Scholar

[42] Y. Zhao, S. Liao, HAM­based package BVPh 2.0 for nonlinear boundary value problems, in: S. Liao (Ed.), Advances in Homotopy Analysis Method, World Scientific Press (2013).

DOI: 10.1142/9789814551250_0009

Google Scholar

[43] S. J. Liao, Beyond Perturbation: An Introduction to Homotopy Analysis Method, Chapman & Hall, Boca Raton, FL (2003).

Google Scholar

[44] S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Spring, Heidilberg (2012).

Google Scholar

[45] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University (1992).

Google Scholar

[46] U. Farooq, Z. Lin, Nonlinear heat transfer in a two­layer flow with nanofluids by OHAM, J. Heat Transfer 136(2014) 021702­1. http://dx.doi.org/10.1115/1.4025432.

DOI: 10.1115/1.4025432

Google Scholar

[47] U. Farooq, T. Hayat, A. Alsaedi, S. Liao, Heat and mass transfer of two­layer flows of third­grade nano­fluids in a vertical channel, Applied Mathematics and Computation 242(2014) 528­540. https://doi.org/10.1016/j.amc.2014.05.126[48] U. Farooq, Y. L. Zhao, T. Hayat, A. Alsaedi, S. Liao, Application of the HAM­based Mathematica package BVPh 2.0 on MHD Falkner­Skan flow of nano­fluid, Computers and Fluids 111(2015) 69­75.

DOI: 10.1016/j.compfluid.2015.01.005

Google Scholar

[49] Nasreen Bano, B. B. Singh, S. R. Sayyed, Homotopy analysis for MHD Hiemenz flow in a porous medium with thermal radiation, Frontiers in Heat and Mass Transfer (FHMT) 10 (2018) 1­16.

DOI: 10.5098/hmt.10.14

Google Scholar

[50] N. Bachok, A. Ishak, I. Pop, Boundary layer stagnation­point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid, International Journal of Heat and Mass Transfer 55(25­26) (2012) 8122­ 8128.

DOI: 10.1016/j.ijheatmasstransfer.2012.08.051

Google Scholar

[51] S. V. Subhashini, R. Sumathi, and E. Momoniat, Dual solutions of a mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids, Meccanica 49(10) (2014) 2467­2478.

DOI: 10.1007/s11012-014-0016-9

Google Scholar