Effects of Retardation Time on Non-Newtonian Electro-Osmotic Flow in a Micro-Channel

Article Preview

Abstract:

In this paper, we have studied the effects of retardation time of non-Newtonian Oldroyd-B type fluid driven by Helmholtz-Smoluchowski velocity in a micro-channel. The potential electric field is applied along the length of the micro-channel describing by the Poisson–Boltzmann equation. The governing model equation was solved analytically using the classical method of partial differential equations. Analytical solution was simulated with the help of MATHEMATICA software and the graphical results for various physical flow parameters were analyzed. Results shows that for larger values of retardation time of a viscoelastic fluid the higher the viscoelastic effect of the fluid and this makes it to need more time for the stress to respond to deformation. Also, the electrokinetic width of micro-channel play a vital rule on the performance of velocity distribution.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 26)

Pages:

39-52

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kang, C. Yang, and X. Huang, Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials, Journal of Colloid and Interface Science 253(2002),285--294.

DOI: 10.1006/jcis.2002.8453

Google Scholar

[2] H. K. Tsao, Electroosmotic Flow through an Annulus, Journal of Colloid and Interface Science 225(2000),247--250.

DOI: 10.1006/jcis.1999.6696

Google Scholar

[3] V. M. Barragan and C. R. Bauza, Electroosmosis through aCation-Exchange Membrane: Effect of an ac Perturbation on the Electroosmotic Flow, Journal of Colloid and Interface Science 230(2000),359--366.

DOI: 10.1006/jcis.2000.7063

Google Scholar

[4] C. Yang,C. B. Ng and V. Chan, Transient Analysis of Electroosmotic Flow in a Slit Microchannel, Journal of Colloid and Interface Science 248(2002),524--527.

DOI: 10.1006/jcis.2002.8219

Google Scholar

[5] Y. Kang, C. Yang, and X. Huang, Dynamic aspects of Electroosmotic Flow in a Cylindrical microcapillary, Int. Journal of Engineering Science 40(2002),2203--2221.

DOI: 10.1016/s0020-7225(02)00143-x

Google Scholar

[6] D. Burgreen and F. R. Nakache, Electrokinetic Flow in ultrafine Capillary slit, Journal of Phys. Chem. 68(2002),1084.

Google Scholar

[7] C. L. Rice and R. Whitehead, Electrokinetic Flow in a narrow Cylindrical Capillary, Journal of Phys. Chem. 69(1965),4017.

DOI: 10.1021/j100895a062

Google Scholar

[8] J. Escandón, E. Jiménez, C. Hernández, O. Bautista, & F. Méndez, Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potentials. European Journal of Mechanics-B/Fluids, 53 (2015) 180-189.

DOI: 10.1016/j.euromechflu.2015.05.001

Google Scholar

[9] E. Jiménez, J. Escandón, O. Bautista, & F. Méndez, Start-up electroosmotic flow of Maxwell fluids in a rectangular microchannel with high zeta potentials. Journal of non-Newtonian Mechanics, 227 (2016) 17-29.

DOI: 10.1016/j.jnnfm.2015.11.003

Google Scholar

[10] X. Chu, & Y. Jian, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with patterned charged surface in narrow confinements. Journal of Physics D: Applied Physics, (2019).

DOI: 10.1088/1361-6463/ab2b27

Google Scholar

[11] T. Hayat, S. B. Khan and M. Khan, Exact solution for rotating flows of generalized Burgers' fluid in a porous space. Applied Mathematics Modeling (2007)32, 748-750.

DOI: 10.1016/j.apm.2007.02.011

Google Scholar

[12] Zhao, M., Wang, S., & Wei, S. (2013). Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. Journal of Non-Newtonian Fluid Mechanics, 201, 135-139.

DOI: 10.1016/j.jnnfm.2013.09.002

Google Scholar

[13] Peralta, M., Bautista, O., Méndez, F., & Bautista, E. (2018). Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials. Applied Mathematics and Mechanics, 39(5), 667-684.

DOI: 10.1007/s10483-018-2328-6

Google Scholar

[14] M. Zhao, S. Wang, S. Wei, Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section, Journal of Non-Newtonian Fluid Mechanics 201 (2013) 135--139.

DOI: 10.1016/j.jnnfm.2013.09.002

Google Scholar

[15] C. Zhao, C. Yang, Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels, Appl. Math. Comput. 211 (2009) 502--509.

DOI: 10.1016/j.amc.2009.01.068

Google Scholar

[16] M. Zhao, S. Wang and S. wei, Transient elctroosmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J.non-Newtonian fluid Mech. 201(2013)135-139.

DOI: 10.1016/j.jnnfm.2013.09.002

Google Scholar

[17] X. X. Li, Z. Yin, Y. J. Jian, L. Chang, J. Su and Q. S. Liu, Transient eletro-osmotic flow of generalized Maxwell fluid through a microchannel, Journal of Non-Newton Fluid mech.(2012)43-47(187-188).

DOI: 10.1016/j.jnnfm.2012.09.005

Google Scholar