[1]
Y. Kang, C. Yang, and X. Huang, Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials, Journal of Colloid and Interface Science 253(2002),285--294.
DOI: 10.1006/jcis.2002.8453
Google Scholar
[2]
H. K. Tsao, Electroosmotic Flow through an Annulus, Journal of Colloid and Interface Science 225(2000),247--250.
DOI: 10.1006/jcis.1999.6696
Google Scholar
[3]
V. M. Barragan and C. R. Bauza, Electroosmosis through aCation-Exchange Membrane: Effect of an ac Perturbation on the Electroosmotic Flow, Journal of Colloid and Interface Science 230(2000),359--366.
DOI: 10.1006/jcis.2000.7063
Google Scholar
[4]
C. Yang,C. B. Ng and V. Chan, Transient Analysis of Electroosmotic Flow in a Slit Microchannel, Journal of Colloid and Interface Science 248(2002),524--527.
DOI: 10.1006/jcis.2002.8219
Google Scholar
[5]
Y. Kang, C. Yang, and X. Huang, Dynamic aspects of Electroosmotic Flow in a Cylindrical microcapillary, Int. Journal of Engineering Science 40(2002),2203--2221.
DOI: 10.1016/s0020-7225(02)00143-x
Google Scholar
[6]
D. Burgreen and F. R. Nakache, Electrokinetic Flow in ultrafine Capillary slit, Journal of Phys. Chem. 68(2002),1084.
Google Scholar
[7]
C. L. Rice and R. Whitehead, Electrokinetic Flow in a narrow Cylindrical Capillary, Journal of Phys. Chem. 69(1965),4017.
DOI: 10.1021/j100895a062
Google Scholar
[8]
J. Escandón, E. Jiménez, C. Hernández, O. Bautista, & F. Méndez, Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potentials. European Journal of Mechanics-B/Fluids, 53 (2015) 180-189.
DOI: 10.1016/j.euromechflu.2015.05.001
Google Scholar
[9]
E. Jiménez, J. Escandón, O. Bautista, & F. Méndez, Start-up electroosmotic flow of Maxwell fluids in a rectangular microchannel with high zeta potentials. Journal of non-Newtonian Mechanics, 227 (2016) 17-29.
DOI: 10.1016/j.jnnfm.2015.11.003
Google Scholar
[10]
X. Chu, & Y. Jian, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with patterned charged surface in narrow confinements. Journal of Physics D: Applied Physics, (2019).
DOI: 10.1088/1361-6463/ab2b27
Google Scholar
[11]
T. Hayat, S. B. Khan and M. Khan, Exact solution for rotating flows of generalized Burgers' fluid in a porous space. Applied Mathematics Modeling (2007)32, 748-750.
DOI: 10.1016/j.apm.2007.02.011
Google Scholar
[12]
Zhao, M., Wang, S., & Wei, S. (2013). Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. Journal of Non-Newtonian Fluid Mechanics, 201, 135-139.
DOI: 10.1016/j.jnnfm.2013.09.002
Google Scholar
[13]
Peralta, M., Bautista, O., Méndez, F., & Bautista, E. (2018). Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials. Applied Mathematics and Mechanics, 39(5), 667-684.
DOI: 10.1007/s10483-018-2328-6
Google Scholar
[14]
M. Zhao, S. Wang, S. Wei, Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section, Journal of Non-Newtonian Fluid Mechanics 201 (2013) 135--139.
DOI: 10.1016/j.jnnfm.2013.09.002
Google Scholar
[15]
C. Zhao, C. Yang, Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels, Appl. Math. Comput. 211 (2009) 502--509.
DOI: 10.1016/j.amc.2009.01.068
Google Scholar
[16]
M. Zhao, S. Wang and S. wei, Transient elctroosmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J.non-Newtonian fluid Mech. 201(2013)135-139.
DOI: 10.1016/j.jnnfm.2013.09.002
Google Scholar
[17]
X. X. Li, Z. Yin, Y. J. Jian, L. Chang, J. Su and Q. S. Liu, Transient eletro-osmotic flow of generalized Maxwell fluid through a microchannel, Journal of Non-Newton Fluid mech.(2012)43-47(187-188).
DOI: 10.1016/j.jnnfm.2012.09.005
Google Scholar