[1]
V. M. Falkner, S. W. Skan, Some approximate solutions of boundary layer for flow past a stretch ing boundary, SIAM J. Appli. Math. 49 (1931) 13501358.
Google Scholar
[2]
D. R. Hartree, On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Math. Proc. Cambridge Philos. Soc. 33(2) (1937) 223239.
DOI: 10.1017/s0305004100019575
Google Scholar
[3]
K. R. Rajgopal, A. S. Gupta, T. Y. Na, A note on the FalknerSkan flows of a nonNewtonian fluids, Int. J. Non Linear Mec. 18(4) (1983) 313320.
Google Scholar
[4]
F. M. Hady, I. A. Hassanein, Effct of transverse magnetic field and porosity on the FalknerSkan flows of a nonNewtonian fluid, Astrophys. Space Sci. 42 (1985) 381390.
Google Scholar
[5]
K. A. Yih, MHD forced convecton flow adjacent to a nonisothermal wedge, International Com munication in Heat and Mass Transfer, 26(6)(1999) 819827.
DOI: 10.1016/s0735-1933(99)00070-6
Google Scholar
[6]
A. Ishak, R. Nazar, I. Pop, FlaknerSkan equation for the flow past a moving wedge with suction or injection, J. Appli. Math. Comput. 25 (2007) 6783.
DOI: 10.1007/bf02832339
Google Scholar
[7]
R. Ahmad and W. A. Khan, Effect of viscous dissipation and internal heat generation/absorption on heat transfer flow over a moving wedge with convective boundary condition, Heat Transfer Asian Research, 42(7)(2013) 589602.
DOI: 10.1002/htj.21055
Google Scholar
[8]
S. Mukhopadhyay, Effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge, J. Appl. Fluid Mech. 2(2) (2009) 294.
DOI: 10.36884/jafm.2.02.11866
Google Scholar
[9]
T. Hayat, M. Hussain, S. Nadeem, S. Mesloub, FalknerSkan wedge flow of a power law fluid with mixed convection and porous medium, Comput. Fluid, 49 (2011) 2228.
DOI: 10.1016/j.compfluid.2011.01.020
Google Scholar
[10]
A. A. Afify, M. A. A. Bazid, MHD FalknerSkan flow and heat transfer characteristics of nanofluids over a wedge with heat source/sink effects, J. Comput. Theor. Nanosci. 11 (2014) 18441852.
DOI: 10.1166/jctn.2014.3578
Google Scholar
[11]
N. Casson, A flow equation for pigmentoil suspensions of printing ink type, In: C. C. Mill, Ed. Rheology of Disperse Systems, Pergamon Press, Oxford, 1959 84104.
Google Scholar
[12]
K. Dash, R. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with homogeneous porous medium, International Journal of Engineering Science 34(10) (1996) 11451156.[13] H. A. Atiya, M. E. Sayed, Transient MHD Couttee flow of a Casson fluid between parallel plates with heat transfer, Ital. J. Pure Appl. Math. N27 (2010) 1938.
DOI: 10.1016/0020-7225(96)00012-2
Google Scholar
[14]
M. Mostafa, T. Hayat, I. Pop, S. Ashar, S. Obaidat, Stagnation point flow of a nanofluid towards a stretching sheet, Int. J. Heat Mass Transfer 54(2526) (2011) 55885594.
DOI: 10.1016/j.ijheatmasstransfer.2011.07.021
Google Scholar
[15]
S. Mukopadhyay, I. C. Mandal, A. J. Chamakha, Casson fluid flow and heat transfer past a symmetric wedge, Heat Transfer Asian Research, 42(8) (2013) 665675.
DOI: 10.1002/htj.21065
Google Scholar
[16]
S. Nadeem, R. U. Haq, N. S. Akbar, MHD three dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition, IEEE Trans. Nan otechnol. 13(1) (2014) 109115.
DOI: 10.1109/tnano.2013.2293735
Google Scholar
[17]
C. S. K. Raju, N. Sandeep, Nonlinear radiative magnetohydrodynamic FalknerSkan flow of Casson fluid over a wedge, Alexandria Engineering Journal 55(3) (2016) 2045(2054).
DOI: 10.1016/j.aej.2016.07.006
Google Scholar
[18]
Imran Ullah, S. Shafie, I. Khan, MHD heat transfer flow of Casson fluid past a stretching wedge subject to suction and injection, Malaysian Journal of Fundamental and Applied Sciences 13(4) (2017) 637641.
DOI: 10.11113/mjfas.v13n4.745
Google Scholar
[19]
Imran Ullah, S. Shafie, O. D. Makinde, I. Khan, Unsteady MHD FalknerSkan flow of Cas son nanofluid with generative/destructive chemical reaction, Chemical Engineering Science 172 (2017) 694-706.
DOI: 10.1016/j.ces.2017.07.011
Google Scholar
[20]
N. S. Shashikumar, M. Archana, B. C. Prasannakumara, B. J. Gireesha, O. D. Makinde, Effects of nonlinear thermal radiation and second order slip on Casson nanofluid flow between parallel plates, Defect and Diffusion Forum 377 (2017) 8494.
DOI: 10.4028/www.scientific.net/ddf.377.84
Google Scholar
[21]
O. D. Makinde, V. Nagendramma, C. S. K. Raju, A. Leelarathnam, Effects of CattaneoChristov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum 378 (2017) 2838.
DOI: 10.4028/www.scientific.net/ddf.378.28
Google Scholar
[22]
O. D. Makinde, N. Sandeep, T. M. Ajayi, I. L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, International Journal of Nonlinear Sciences and Numerical Simulation 19(2/3) (2018) 93-106.
DOI: 10.1515/ijnsns-2016-0087
Google Scholar
[23]
R. Mehmood, M. K. Nayak, N. S. Akbar, O. D. Makinde, Effects of thermaldiffusion and diffusionthermo on oblique stagnation point flow of couple stress Casson fluid over a stretched horizontal riga plate with higher order chemical reaction, Journal of Nanofluids 8 (1) (2019) 94102.
DOI: 10.1166/jon.2019.1560
Google Scholar
[24]
A. Yoshimura, R. K. Prudhomme, Wall slip corrections for Couette and parallel disc viscometer, Journal of Rheology 32 (1998) 5367.
Google Scholar
[25]
H. I. Andersson, Slip flow past a stretching surface, Acta Mechanica 158 (2002) 121125.
Google Scholar
[26]
P.D. Ariel, T. Hayat, S. Asghar, The flow of an elasticoviscous fluid past a stretching sheet with partial slip, Acta Mechanica 187 (2006) 2935.
DOI: 10.1007/s00707-006-0370-3
Google Scholar
[27]
Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching sheet, International Journal of Numerical Methods and Fluids 59 (2009) 443458.[28] M. Turkyilmazoglu, Exact analytic solutions for heat and mass transfer of MHD slip flow in nanofluids, Chemical Engineering Science 84 (2012) 182187.
DOI: 10.1002/fld.1825
Google Scholar
[29]
M. Turkyilmazoglu, Heat and mass transfer of MHD second order slip flow, Computers and Fluids 71 (2013) 426434.
DOI: 10.1016/j.compfluid.2012.11.011
Google Scholar
[30]
M. Turkyilmazoglu, Exact multiple solutions for the slip flow and heat transfer in a converging channel, Journal of Heat Transfer 137 (2015) 1013011.
DOI: 10.1115/1.4030307
Google Scholar
[31]
B. Sahoo, Effects of slip viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past radially stretching sheet, Applied Mathematics and Mechanics 31(2) (2010) 159173.
DOI: 10.1007/s10483-010-0204-7
Google Scholar
[32]
S. Mukhopadhyay, R. S. R. Gorla, Effects of partial slip on boundary layer flow past a perme able exponential stretching sheet in presence of thermal radiation, Heat Mass Transfer 48 (2012) 1773-1781.
DOI: 10.1007/s00231-012-1024-8
Google Scholar
[33]
N. Bano, B. B. Singh, S. R. Sayyed, Homotopy analysis for MHD Hiemenz flow in a porous medium with thermal radiation, velocity and thermal slips effects, Frontiers in Heat and Mass Transfer (FHMT) 10 (2018) 9 pages.
DOI: 10.5098/hmt.10.14
Google Scholar
[34]
E. M. Sparrow, R. D. Cess, Radiation heat transfer, Brooks Cole Publishing Company, Belmont, California, (1970).
Google Scholar
[35]
K. Vafai, H. A. Hadim, J. R. Howell, Radiative transfer in porous media, Handbook of Porous Media, CRC Press, New York, (2000).
Google Scholar
[36]
P. Vyas, A. Rai, Radiative variable fluid properties flow due to a point sink inside a cone filled with porous medium, Applied Mathematical Sciences 6(87) (2012) 43074317.
Google Scholar
[37]
R. Viskanta, R. J. Grosh, Boundary layer in thermal radiation absorbing and emitting media, International Journal of Heat and Mass Transfer 5(9) (1962) 795806.
DOI: 10.1016/0017-9310(62)90180-1
Google Scholar
[38]
M. M. Ali, T. S. Chen, B. F. Armaly, Natural convectionradiation interaction in boundarylayer flow over horizontal surfaces, AIAA Journal 22 (12) (1984).
Google Scholar
[39]
T. Hayat, Z. Abbas, M. Sajid, S. Asghar, The influence of thermal radiation on MHD flow of a second grade fluid, International Journal of Heat and Mass Transfer 50(26) (2007) 931941.
DOI: 10.1016/j.ijheatmasstransfer.2006.08.014
Google Scholar
[40]
I. G. Baoku, C. Israel Cookey, B. I. Olajuwan, Influence of thermal radiation on a transient MHD Couette flow through a porous medium, Journal of Applied Fluid Mechanics 5(1) (2012) 8187.
DOI: 10.36884/jafm.5.01.11960
Google Scholar
[41]
M. R. Krishnamurthy, B. J. Gireesha, B. C. Prasannakumara, R. S. R. Gorla, Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet, Nonlinear Engineering, 5(3) (2016) 147159.
DOI: 10.1515/nleng-2016-0013
Google Scholar
[42]
S. R. Sayyed, B. B. Singh, N. Bano, Radiative MHD stagnationpoint flow with heat transfer past a permeable stretching/shrinking sheet in a porous medium, Diffusion Foundation 11 (2017) 110128.
DOI: 10.4028/www.scientific.net/df.11.110
Google Scholar
[43]
J. K. Zhou, Differential transformation and its applications for electric circuits, Huazhong Uni versity Press, Wuhan, China, (1986).
Google Scholar
[44]
C. K. Chen, S. H. Ho, Solving partial differential equations by two dimensional differential trans form method, Applied Mathematics and Computation 106 (1999) 171179.[45] M.M. Rashidi, The modified differential transform method for solving mhd boundary layer equa tions, Computer Physics Communications 180(2009) 22102217.
DOI: 10.1016/j.cpc.2009.06.029
Google Scholar
[46]
M. M. Rashidi, E. Erfani, A new analytical study of MHD stagnationpoint flow in porous media with heat transfer, Computers and Fluids 40 (2011) 172178.
DOI: 10.1016/j.compfluid.2010.08.021
Google Scholar
[47]
M. Thiagarajan, K. Senthilkumar, DTMPade approximations for MHD flow with suc tion/blowing, Journal of Applied Fluid Mechanics 6(4) (2013) 537543.
Google Scholar
[48]
M. Hatami, D. Jing, Differential transformation method for Newtonian and nonNewtonian nanofluids flow analysis: compared to numerical solution, Alexandria Engineering Journal 55(2) (2016) 731739.
DOI: 10.1016/j.aej.2016.01.003
Google Scholar
[49]
S. R. Sayyed, B. B. Singh, N. Bano, Analytical solution of MHD slip flow past a constant wedge within a porous medium using DTMPade, Applied Mathematics and Computation, 321 (2018) 472482.
DOI: 10.1016/j.amc.2017.10.062
Google Scholar
[50]
Nasreen Bano, B.B. Singh, S.R. Sayyed, DTMPade treatment for magnetohydrodynamic slip flows of upper convected Maxwell fluids above porous stretching sheet, Special Topics & Re views in Porous Media - An International Journal, 9(4) (2018) 379-397.
DOI: 10.1615/specialtopicsrevporousmedia.2018022134
Google Scholar
[51]
X. Su, L. Zheng, X. Zhang, J. Zhang, MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating, Chemical Engineering Science 78 (2012) 18.
DOI: 10.1016/j.ces.2012.04.026
Google Scholar
[52]
X. Su, L. Zheng, X. Zhang, DTMBF method and dual solutions for unsteady MHD flow over permeable shrinking sheet with velocity slip, Applied Mathematics and Mechanics 33(12) (2012) 15551568.
DOI: 10.1007/s10483-012-1643-9
Google Scholar
[53]
Y. Sun, X. Si, Y. Shen, DTMBF method for flow and heat transfer of a nanofluid over a stretching or shrinking sheet, International Journal of Numerical and Analytical Methods in Engineering (2013) 110118.
Google Scholar
[54]
C. Zhang, L. Zheng, X. Zhang, G. Chen, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Applied Mathematical Modelling 39(1) (2015) 165181.
DOI: 10.1016/j.apm.2014.05.023
Google Scholar
[55]
C. Limei, S. Yina, S. Yanan, S. Xinhui, DTMBF method for the flow and heat transfer over a nonlinearly stretching sheet with nanofluids, Mathematical and Computational Applications 20(1) (2015) 1524.
DOI: 10.3390/mca20010024
Google Scholar
[56]
X. Su, Analytical computation of unsteady MHD mixed convective heat transfer over a vertical stretching plate with partial slip conditions, Indian Journal of Pure and Applied Mathematics 53 (2015) 643651.
Google Scholar
[57]
M. Q. Brewster, Thermal Radiative transfer and properties, John Wiley and Sons, New York, (1992).
Google Scholar
[58]
M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Slip MHD liquid flow and heat transfer over nonlinear permeable stretching surface with chemical reaction, International Journal of Heat and Mass Transfer 54(2011) 32143225.
DOI: 10.1016/j.ijheatmasstransfer.2011.04.009
Google Scholar
[59]
K. Das, Nanofluid flow over a nonlinear permeable stretching sheet with partial slip, Journal of Egyptian Mathematical Society, 23(2015) 451456.
DOI: 10.1016/j.joems.2014.06.014
Google Scholar