MHD Heat Transfer Flow of Casson Fluid with Velocity and Thermal Slips over a Stretching Wedge in the Presence of Thermal Radiation

Article Preview

Abstract:

This article investigates the boundary layer flow and heat transfer of an electrically conducting Casson fluid over a stretching wedge by considering the effects of suction/injection, velocity and thermal slips and thermal radiation. By applying the appropriate similarity transformations,the governing partial differential equations are transformed to highly non-linear ordinary differential equations. These resulting similarity equations are then solved by a new analytic method namely DTM-BF, based on differential transformation method (DTM) and base function (BF). A comparativestudy of the present numerical results has been made with the already published results available in the literature. The effects of various governing parameters on the flow and heat transfer characteristics have been discussed graphically.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 26)

Pages:

1-22

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. M. Falkner, S. W. Skan, Some approximate solutions of boundary layer for flow past a stretch­ ing boundary, SIAM J. Appli. Math. 49 (1931) 1350­1358.

Google Scholar

[2] D. R. Hartree, On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Math. Proc. Cambridge Philos. Soc. 33(2) (1937) 223­239.

DOI: 10.1017/s0305004100019575

Google Scholar

[3] K. R. Rajgopal, A. S. Gupta, T. Y. Na, A note on the Falkner­Skan flows of a non­Newtonian fluids, Int. J. Non Linear Mec. 18(4) (1983) 313­320.

Google Scholar

[4] F. M. Hady, I. A. Hassanein, Effct of transverse magnetic field and porosity on the Falkner­Skan flows of a non­Newtonian fluid, Astrophys. Space Sci. 42 (1985) 381­390.

Google Scholar

[5] K. A. Yih, MHD forced convecton flow adjacent to a non­isothermal wedge, International Com­ munication in Heat and Mass Transfer, 26(6)(1999) 819­827.

DOI: 10.1016/s0735-1933(99)00070-6

Google Scholar

[6] A. Ishak, R. Nazar, I. Pop, Flakner­Skan equation for the flow past a moving wedge with suction or injection, J. Appli. Math. Comput. 25 (2007) 67­83.

DOI: 10.1007/bf02832339

Google Scholar

[7] R. Ahmad and W. A. Khan, Effect of viscous dissipation and internal heat generation/absorption on heat transfer flow over a moving wedge with convective boundary condition, Heat Transfer­ Asian Research, 42(7)(2013) 589­602.

DOI: 10.1002/htj.21055

Google Scholar

[8] S. Mukhopadhyay, Effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge, J. Appl. Fluid Mech. 2(2) (2009) 29­4.

DOI: 10.36884/jafm.2.02.11866

Google Scholar

[9] T. Hayat, M. Hussain, S. Nadeem, S. Mesloub, Falkner­Skan wedge flow of a power law fluid with mixed convection and porous medium, Comput. Fluid, 49 (2011) 22­28.

DOI: 10.1016/j.compfluid.2011.01.020

Google Scholar

[10] A. A. Afify, M. A. A. Bazid, MHD Falkner­Skan flow and heat transfer characteristics of nanofluids over a wedge with heat source/sink effects, J. Comput. Theor. Nanosci. 11 (2014) 1844­1852.

DOI: 10.1166/jctn.2014.3578

Google Scholar

[11] N. Casson, A flow equation for pigment­oil suspensions of printing ink type, In: C. C. Mill, Ed. Rheology of Disperse Systems, Pergamon Press, Oxford, 1959 84­104.

Google Scholar

[12] K. Dash, R. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with homogeneous porous medium, International Journal of Engineering Science 34(10) (1996) 1145­1156.[13] H. A. Atiya, M. E. Sayed, Transient MHD Couttee flow of a Casson fluid between parallel plates with heat transfer, Ital. J. Pure Appl. Math. N­27 (2010) 19­38.

DOI: 10.1016/0020-7225(96)00012-2

Google Scholar

[14] M. Mostafa, T. Hayat, I. Pop, S. Ashar, S. Obaidat, Stagnation point flow of a nanofluid towards a stretching sheet, Int. J. Heat Mass Transfer 54(25­26) (2011) 5588­5594.

DOI: 10.1016/j.ijheatmasstransfer.2011.07.021

Google Scholar

[15] S. Mukopadhyay, I. C. Mandal, A. J. Chamakha, Casson fluid flow and heat transfer past a symmetric wedge, Heat Transfer Asian Research, 42(8) (2013) 665­675.

DOI: 10.1002/htj.21065

Google Scholar

[16] S. Nadeem, R. U. Haq, N. S. Akbar, MHD three dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition, IEEE Trans. Nan­ otechnol. 13(1) (2014) 109­115.

DOI: 10.1109/tnano.2013.2293735

Google Scholar

[17] C. S. K. Raju, N. Sandeep, Nonlinear radiative magnetohydrodynamic Falkner­Skan flow of Casson fluid over a wedge, Alexandria Engineering Journal 55(3) (2016) 2045­(2054).

DOI: 10.1016/j.aej.2016.07.006

Google Scholar

[18] Imran Ullah, S. Shafie, I. Khan, MHD heat transfer flow of Casson fluid past a stretching wedge subject to suction and injection, Malaysian Journal of Fundamental and Applied Sciences 13(4) (2017) 637­641.

DOI: 10.11113/mjfas.v13n4.745

Google Scholar

[19] Imran Ullah, S. Shafie, O. D. Makinde, I. Khan, Unsteady MHD Falkner­Skan flow of Cas­ son nanofluid with generative/destructive chemical reaction, Chemical Engineering Science 172 (2017) 694-706.

DOI: 10.1016/j.ces.2017.07.011

Google Scholar

[20] N. S. Shashikumar, M. Archana, B. C. Prasannakumara, B. J. Gireesha, O. D. Makinde, Effects of nonlinear thermal radiation and second order slip on Casson nanofluid flow between parallel plates, Defect and Diffusion Forum 377 (2017) 84­94.

DOI: 10.4028/www.scientific.net/ddf.377.84

Google Scholar

[21] O. D. Makinde, V. Nagendramma, C. S. K. Raju, A. Leelarathnam, Effects of Cattaneo­Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum 378 (2017) 28­38.

DOI: 10.4028/www.scientific.net/ddf.378.28

Google Scholar

[22] O. D. Makinde, N. Sandeep, T. M. Ajayi, I. L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, International Journal of Nonlinear Sciences and Numerical Simulation 19(2/3) (2018) 93-106.

DOI: 10.1515/ijnsns-2016-0087

Google Scholar

[23] R. Mehmood, M. K. Nayak, N. S. Akbar, O. D. Makinde, Effects of thermal­diffusion and diffusion­thermo on oblique stagnation point flow of couple stress Casson fluid over a stretched horizontal riga plate with higher order chemical reaction, Journal of Nanofluids 8 (1) (2019) 94­102.

DOI: 10.1166/jon.2019.1560

Google Scholar

[24] A. Yoshimura, R. K. Prudhomme, Wall slip corrections for Couette and parallel disc viscometer, Journal of Rheology 32 (1998) 53­67.

Google Scholar

[25] H. I. Andersson, Slip flow past a stretching surface, Acta Mechanica 158 (2002) 121­125.

Google Scholar

[26] P.D. Ariel, T. Hayat, S. Asghar, The flow of an elastico­viscous fluid past a stretching sheet with partial slip, Acta Mechanica 187 (2006) 29­35.

DOI: 10.1007/s00707-006-0370-3

Google Scholar

[27] Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching sheet, International Journal of Numerical Methods and Fluids 59 (2009) 443­458.[28] M. Turkyilmazoglu, Exact analytic solutions for heat and mass transfer of MHD slip flow in nanofluids, Chemical Engineering Science 84 (2012) 182­187.

DOI: 10.1002/fld.1825

Google Scholar

[29] M. Turkyilmazoglu, Heat and mass transfer of MHD second order slip flow, Computers and Fluids 71 (2013) 426­434.

DOI: 10.1016/j.compfluid.2012.11.011

Google Scholar

[30] M. Turkyilmazoglu, Exact multiple solutions for the slip flow and heat transfer in a converging channel, Journal of Heat Transfer 137 (2015) 101301­1.

DOI: 10.1115/1.4030307

Google Scholar

[31] B. Sahoo, Effects of slip viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past radially stretching sheet, Applied Mathematics and Mechanics 31(2) (2010) 159­173.

DOI: 10.1007/s10483-010-0204-7

Google Scholar

[32] S. Mukhopadhyay, R. S. R. Gorla, Effects of partial slip on boundary layer flow past a perme­ able exponential stretching sheet in presence of thermal radiation, Heat Mass Transfer 48 (2012) 1773-1781.

DOI: 10.1007/s00231-012-1024-8

Google Scholar

[33] N. Bano, B. B. Singh, S. R. Sayyed, Homotopy analysis for MHD Hiemenz flow in a porous medium with thermal radiation, velocity and thermal slips effects, Frontiers in Heat and Mass Transfer (FHMT) 10 (2018) 9 pages.

DOI: 10.5098/hmt.10.14

Google Scholar

[34] E. M. Sparrow, R. D. Cess, Radiation heat transfer, Brooks Cole Publishing Company, Belmont, California, (1970).

Google Scholar

[35] K. Vafai, H. A. Hadim, J. R. Howell, Radiative transfer in porous media, Handbook of Porous Media, CRC Press, New York, (2000).

Google Scholar

[36] P. Vyas, A. Rai, Radiative variable fluid properties flow due to a point sink inside a cone filled with porous medium, Applied Mathematical Sciences 6(87) (2012) 4307­4317.

Google Scholar

[37] R. Viskanta, R. J. Grosh, Boundary layer in thermal radiation absorbing and emitting media, International Journal of Heat and Mass Transfer 5(9) (1962) 795­806.

DOI: 10.1016/0017-9310(62)90180-1

Google Scholar

[38] M. M. Ali, T. S. Chen, B. F. Armaly, Natural convection­radiation interaction in boundary­layer flow over horizontal surfaces, AIAA Journal 22 (12) (1984).

Google Scholar

[39] T. Hayat, Z. Abbas, M. Sajid, S. Asghar, The influence of thermal radiation on MHD flow of a second grade fluid, International Journal of Heat and Mass Transfer 50(2­6) (2007) 931­941.

DOI: 10.1016/j.ijheatmasstransfer.2006.08.014

Google Scholar

[40] I. G. Baoku, C. Israel­ Cookey, B. I. Olajuwan, Influence of thermal radiation on a transient MHD Couette flow through a porous medium, Journal of Applied Fluid Mechanics 5(1) (2012) 81­87.

DOI: 10.36884/jafm.5.01.11960

Google Scholar

[41] M. R. Krishnamurthy, B. J. Gireesha, B. C. Prasannakumara, R. S. R. Gorla, Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a non­linear stretching sheet, Nonlinear Engineering, 5(3) (2016) 147­159.

DOI: 10.1515/nleng-2016-0013

Google Scholar

[42] S. R. Sayyed, B. B. Singh, N. Bano, Radiative MHD stagnation­point flow with heat transfer past a permeable stretching/shrinking sheet in a porous medium, Diffusion Foundation 11 (2017) 110­128.

DOI: 10.4028/www.scientific.net/df.11.110

Google Scholar

[43] J. K. Zhou, Differential transformation and its applications for electric circuits, Huazhong Uni­ versity Press, Wuhan, China, (1986).

Google Scholar

[44] C. K. Chen, S. H. Ho, Solving partial differential equations by two dimensional differential trans­ form method, Applied Mathematics and Computation 106 (1999) 171­179.[45] M.M. Rashidi, The modified differential transform method for solving mhd boundary layer equa­ tions, Computer Physics Communications 180(2009) 2210­2217.

DOI: 10.1016/j.cpc.2009.06.029

Google Scholar

[46] M. M. Rashidi, E. Erfani, A new analytical study of MHD stagnation­point flow in porous media with heat transfer, Computers and Fluids 40 (2011) 172­178.

DOI: 10.1016/j.compfluid.2010.08.021

Google Scholar

[47] M. Thiagarajan, K. Senthilkumar, DTM­Pade approximations for MHD flow with suc­ tion/blowing, Journal of Applied Fluid Mechanics 6(4) (2013) 537­543.

Google Scholar

[48] M. Hatami, D. Jing, Differential transformation method for Newtonian and non­Newtonian nanofluids flow analysis: compared to numerical solution, Alexandria Engineering Journal 55(2) (2016) 731­739.

DOI: 10.1016/j.aej.2016.01.003

Google Scholar

[49] S. R. Sayyed, B. B. Singh, N. Bano, Analytical solution of MHD slip flow past a constant wedge within a porous medium using DTM­Pade, Applied Mathematics and Computation, 321 (2018) 472­482.

DOI: 10.1016/j.amc.2017.10.062

Google Scholar

[50] Nasreen Bano, B.B. Singh, S.R. Sayyed, DTM­Pade treatment for magnetohydrodynamic slip flows of upper convected Maxwell fluids above porous stretching sheet, Special Topics & Re­ views in Porous Media - An International Journal, 9(4) (2018) 379-397.

DOI: 10.1615/specialtopicsrevporousmedia.2018022134

Google Scholar

[51] X. Su, L. Zheng, X. Zhang, J. Zhang, MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating, Chemical Engineering Science 78 (2012) 1­8.

DOI: 10.1016/j.ces.2012.04.026

Google Scholar

[52] X. Su, L. Zheng, X. Zhang, DTM­BF method and dual solutions for unsteady MHD flow over permeable shrinking sheet with velocity slip, Applied Mathematics and Mechanics 33(12) (2012) 1555­1568.

DOI: 10.1007/s10483-012-1643-9

Google Scholar

[53] Y. Sun, X. Si, Y. Shen, DTM­BF method for flow and heat transfer of a nanofluid over a stretching or shrinking sheet, International Journal of Numerical and Analytical Methods in Engineering (2013) 110­118.

Google Scholar

[54] C. Zhang, L. Zheng, X. Zhang, G. Chen, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Applied Mathematical Modelling 39(1) (2015) 165­181.

DOI: 10.1016/j.apm.2014.05.023

Google Scholar

[55] C. Limei, S. Yina, S. Yanan, S. Xinhui, DTM­BF method for the flow and heat transfer over a non­linearly stretching sheet with nanofluids, Mathematical and Computational Applications 20(1) (2015) 15­24.

DOI: 10.3390/mca20010024

Google Scholar

[56] X. Su, Analytical computation of unsteady MHD mixed convective heat transfer over a vertical stretching plate with partial slip conditions, Indian Journal of Pure and Applied Mathematics 53 (2015) 643­651.

Google Scholar

[57] M. Q. Brewster, Thermal Radiative transfer and properties, John Wiley and Sons, New York, (1992).

Google Scholar

[58] M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Slip MHD liquid flow and heat transfer over non­linear permeable stretching surface with chemical reaction, International Journal of Heat and Mass Transfer 54(2011) 3214­3225.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.009

Google Scholar

[59] K. Das, Nanofluid flow over a non­linear permeable stretching sheet with partial slip, Journal of Egyptian Mathematical Society, 23(2015) 451­456.

DOI: 10.1016/j.joems.2014.06.014

Google Scholar