Computational Analysis on Gas Turbine Blade by Hole Modified for Optimization the Effectiveness

Article Preview

Abstract:

In order to reduce the operating costs of the engine, turbine designers must also increase the life of their components. However, high gas temperatures throughout the engine require more cooling air or better cooling efficiency to protect the parts from thermal damage. This study presents numerical research on cooling holes. Research focused on aerodynamics and thermal aspects of shallow whole angle. The numerical simulation is performed based on Reynolds Averaged Navier-Stokes (RANS) equations with SST turbulence model by using CFX. A modification has been done in the normal injection hole of 35°, by injecting the cold fluid at different blowing ratio, providing a significant change in the shape of holes which later we found in our numerical investigation giving good quality of film cooling effectiveness.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 26)

Pages:

157-169

Citation:

Online since:

March 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bogard, D. G., and Thole, K. A., Gas Turbine Film Cooling.Journal of Propulsion and Power, vol. 22, Mar. (2006), p.249–270.

DOI: 10.2514/1.18034

Google Scholar

[2] Bogard, D. G., Airfoil film cooling, The Gas Turbine Handbook, National Energy Technology Laboratory, (2006) Section 4.2.2.1.

Google Scholar

[3] Han, J., Dutta, S., and Ekkad, S., Gas turbine heat transfer and cooling technology, New York: CRC Press, (2000).

Google Scholar

[4] Goldstein, R., Film cooling, Advances in heat transfer Vol 7.1, (1971), p.321–379.

Google Scholar

[5] Bunker, R. S., A Review of Shaped Hole Turbine Film-Cooling Technology, Journal of Heat Transfer, vol. 127, (Apr. 2005), p.441.

DOI: 10.1115/1.1860562

Google Scholar

[6] Goldstein, R. J., Eckert, E. R. G., and Burggraf, F., Effects of hole geometry and density on three-dimensional film cooling, International Journal of Heat and Mass Transfer, vol. 17, (May 1974), p.595–607.

DOI: 10.1016/0017-9310(74)90007-6

Google Scholar

[7] Schmidt, D. L., Sen, B., and Bogard, D. G., Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, Journal of Turbomachinery, vol. 118, (Oct. 1996), p.807.

DOI: 10.1115/1.2840938

Google Scholar

[8] Heidmann, J. D., and Ekkad, S., A Novel Antivortex Turbine Film-Cooling Hole Concept, Journal of Turbomachinery, vol. 130, (Jul. 2008), p.031020.

DOI: 10.1115/1.2777194

Google Scholar

[9] Dhungel, A., Lu, Y., Phillips, W., Ekkad, S. V., and Heidmann, J., Film Cooling from a Row of Holes Supplemented with Antivortex Holes, Journal of Turbomachinery, vol. 131, (Apr. 2009), p.021007.

DOI: 10.1115/1.2950059

Google Scholar

[10] Sargison, J. E., Development of a Novel Film Cooling Hole Geometry, PhD Dissertation, Dept. of Engineering Sci., University of Oxford, (2001).

Google Scholar

[11] Bunker, R. S., Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot,Volume 3: Turbo Expo 2002, Parts A and B, ASME, (2002), p.129–138.

DOI: 10.1115/gt2002-30178

Google Scholar

[12] Lu, Y., Faucheaux, D., and Ekkad, S. V., Film Cooling Measurements for Novel Hole Configurations,, ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, ASME, (2005), p.59–66.

DOI: 10.1115/ht2005-72396

Google Scholar

[13] Gräf, L., and Kleiser, L. Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses, Journal of Turbomachinery, (2014).

DOI: 10.1115/1.4024648

Google Scholar

[14] Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D., and Rawlinson, A. J., A Converging Slot-Hole Film- Cooling Geometry-Part 1: Low-Speed Flat-Plate Heat Transfer and Loss, Trans. ASME Journal of Turbomachinery, vol. 124, no. 3,(2002) p.453–460.

DOI: 10.1115/1.1459735

Google Scholar

[15] Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D., and Rawlinson, A. J., A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss, Trans. ASME Journal of Turbomachinery, vol. 124, no. 3, (2002), p.461–471.

DOI: 10.1115/1.1459736

Google Scholar

[16] Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D.,and Rawlinson, A. J., Flow Visualizations of the External Flow from a Converging Slot-Hole Film Cooling Geometry, Experiments in Fluids, vol. 38, no. 3,(2005) p.304–318.

DOI: 10.1007/s00348-004-0892-1

Google Scholar

[17] Azzi, A., and Jubran, B. A., Numerical Modelling of Film Cooling from Converging Slot Hole, Heat Mass Transfer, vol. 43, no. 4, (2007), p.381–388.

DOI: 10.1007/s00231-006-0115-9

Google Scholar

[18] Takeishi, K., Komiyama, M., Oda, Y., Egawa, Y., and Kitamura,T., Aerothermal Investigations on Mixing Flow Field of Film Cooling with Swirling Coolant Flow, Proc. ASME Turbo Expo Conf., Vancouver, British Columbia, Canada, (2011), GT2011-46838.

DOI: 10.1115/gt2011-46838

Google Scholar

[19] Baheri Islami, S., Alavi-Tabrizi, S. P., Jubran, B. A., and Esmaeilzadeh, E., Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling, Heat Transfer Engineering, vol. 31, no. 10,(2010), p.889–906.

DOI: 10.1080/01457630903550317

Google Scholar

[20] Murata, A.; Nishida, S.; Saito, H.; Iwamoto, K.; Okita, Y.; Nakamata, C. Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge. J. Turbomach. (2012), 134, 051033.

DOI: 10.1115/1.4004828

Google Scholar

[21] Ling, J.; Elkins, C.J.; Eaton, J.K. The Effect of Land Taper Angle on Trailing Edge Slot Film Cooling. J. Turbomach. (2015), 137, 071003.

DOI: 10.1115/1.4029174

Google Scholar

[22] Sinha, A. K., Bogard, D. G., and Crawford, M. E., , 'Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,,ASME J. Turbomach., Vol 113, (1991) p.442–449.

DOI: 10.1115/1.2927894

Google Scholar

[23] Taslim, M.E.; Spring, S.D.; Mehlman, B.P. Experimental investigation of film cooling effectiveness for slots of various exit geometries. J. Thermophys. Heat Transf, Vol 6, (1992)p.302–307.

DOI: 10.2514/3.359

Google Scholar

[24] Yang, Z.; Hu, H. Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique. J. Propuls. Power, Vol 27, (2011), p.700–709.

DOI: 10.2514/1.b34070

Google Scholar

[25] Yang, Z.; Hu, H. An experimental investigation on the trailing edge cooling of turbine blades. Propuls. Power Res.Vol 1, (2012), p.36–47.

DOI: 10.1016/j.jppr.2012.10.007

Google Scholar

[26] Martini, P.; Schulz, A.; Bauer, H.J. Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils with Various Internal Cooling Designs. J. Turbomach. Vol 128, (2005), p.196–205.

DOI: 10.1115/1.2103094

Google Scholar

[27] Kebir,f; Khorsi,a. Numerical Approach at Flat Plate for Predicting the Film Cooling Effectiveness Part A: Effect Blowing Ratio; Diffusion Foundations, Vol. 16,(2018), pp.30-44.

DOI: 10.4028/www.scientific.net/df.16.30

Google Scholar

[28] Kebir,f; Khorsi,a; Numerical Approach at Flat Plate for Predicting the Film Cooling Effectiveness Part B: Effect Injection Angle; Diffusion Foundations. Vol. 16,(2018), pp.57-71.

DOI: 10.4028/www.scientific.net/df.16.57

Google Scholar

[29] Kebir,f; Azzi,a;Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction; Numerical Heat Transfer, Part A; Vo.73,6, (2018), pp.408-427.6.

DOI: 10.1080/10407782.2018.1444870

Google Scholar

[30] Bardina, J.E., Huang, P.G. and Coakley, T.J., "Turbulence Modeling, Validation, Testing and Development, NASA Technical Memorandum 110446,. (see also Bardina, J.E., Huang, P.G. and Coakley, T., Turbulence Modeling Validation, AIAA,(1997), pp.97-2121).

DOI: 10.2514/6.1997-2121

Google Scholar

[31] Menter, F.R., Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows", AIAA, (1993),pp.93-2906.

Google Scholar

[32] Alzurfi N, Turan A, Nasser A, Alhusseny A. Numerical simulation of film cooling effectiveness in a rotating blade at high blowing ratios. The 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamic, Costa de Sol, (2016) pp.473-482.

Google Scholar

[33] Silieti M, Divo E, Kassab A. The effect of conjugate heat transfer on film cooling effectiveness. International Journal of Computation and Methodology 56(5): (2010) pp.335-350. http://dx.doi.org/10.1080/10407790903508046.

DOI: 10.1080/10407790903508046

Google Scholar

[34] Çengel Y, Boles M, Thermodynamics: An engineering approach. 8th Edition. McGraw-Hill Education, New York. (2015).

Google Scholar

[35] Straub D, Sidwell T, Casleton K, Chien S, Chyu M. High temperature film cooling test facility and preliminary test. ASME Turbo Expo, Copenhagen, Denmark, (2012) pp.1661-1671. http://dx.doi.org/10.1115/GT2012-69767.

DOI: 10.1115/gt2012-69767

Google Scholar

[36] Chyu M, Siw S. Recent advances of internal cooling techniques for gas turbine airfoils. Journal of Thermal Science and Engineering Applications, 5(2): 021008. (2013) http://dx.doi.org/10.1115/1.4023829.

DOI: 10.1115/1.4023829

Google Scholar

[37] Rezazadeh R, Alizadeh M, Alireza F, Khaledi H. Turbine blade temperature calculation and life estimation - a sensitivity analysis. Propulsion and Power Research 2(2), (2013) pp.148-161. http://dx.doi.org/10.1016/j.jppr.2013.04.004.

DOI: 10.1016/j.jppr.2013.04.004

Google Scholar