[1]
Bogard, D. G., and Thole, K. A., Gas Turbine Film Cooling.Journal of Propulsion and Power, vol. 22, Mar. (2006), p.249–270.
DOI: 10.2514/1.18034
Google Scholar
[2]
Bogard, D. G., Airfoil film cooling, The Gas Turbine Handbook, National Energy Technology Laboratory, (2006) Section 4.2.2.1.
Google Scholar
[3]
Han, J., Dutta, S., and Ekkad, S., Gas turbine heat transfer and cooling technology, New York: CRC Press, (2000).
Google Scholar
[4]
Goldstein, R., Film cooling, Advances in heat transfer Vol 7.1, (1971), p.321–379.
Google Scholar
[5]
Bunker, R. S., A Review of Shaped Hole Turbine Film-Cooling Technology, Journal of Heat Transfer, vol. 127, (Apr. 2005), p.441.
DOI: 10.1115/1.1860562
Google Scholar
[6]
Goldstein, R. J., Eckert, E. R. G., and Burggraf, F., Effects of hole geometry and density on three-dimensional film cooling, International Journal of Heat and Mass Transfer, vol. 17, (May 1974), p.595–607.
DOI: 10.1016/0017-9310(74)90007-6
Google Scholar
[7]
Schmidt, D. L., Sen, B., and Bogard, D. G., Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, Journal of Turbomachinery, vol. 118, (Oct. 1996), p.807.
DOI: 10.1115/1.2840938
Google Scholar
[8]
Heidmann, J. D., and Ekkad, S., A Novel Antivortex Turbine Film-Cooling Hole Concept, Journal of Turbomachinery, vol. 130, (Jul. 2008), p.031020.
DOI: 10.1115/1.2777194
Google Scholar
[9]
Dhungel, A., Lu, Y., Phillips, W., Ekkad, S. V., and Heidmann, J., Film Cooling from a Row of Holes Supplemented with Antivortex Holes, Journal of Turbomachinery, vol. 131, (Apr. 2009), p.021007.
DOI: 10.1115/1.2950059
Google Scholar
[10]
Sargison, J. E., Development of a Novel Film Cooling Hole Geometry, PhD Dissertation, Dept. of Engineering Sci., University of Oxford, (2001).
Google Scholar
[11]
Bunker, R. S., Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot,Volume 3: Turbo Expo 2002, Parts A and B, ASME, (2002), p.129–138.
DOI: 10.1115/gt2002-30178
Google Scholar
[12]
Lu, Y., Faucheaux, D., and Ekkad, S. V., Film Cooling Measurements for Novel Hole Configurations,, ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, ASME, (2005), p.59–66.
DOI: 10.1115/ht2005-72396
Google Scholar
[13]
Gräf, L., and Kleiser, L. Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses, Journal of Turbomachinery, (2014).
DOI: 10.1115/1.4024648
Google Scholar
[14]
Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D., and Rawlinson, A. J., A Converging Slot-Hole Film- Cooling Geometry-Part 1: Low-Speed Flat-Plate Heat Transfer and Loss, Trans. ASME Journal of Turbomachinery, vol. 124, no. 3,(2002) p.453–460.
DOI: 10.1115/1.1459735
Google Scholar
[15]
Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D., and Rawlinson, A. J., A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss, Trans. ASME Journal of Turbomachinery, vol. 124, no. 3, (2002), p.461–471.
DOI: 10.1115/1.1459736
Google Scholar
[16]
Sargison, J. E., Guo, S. M., Oldfield, M. L., Lock, G. D.,and Rawlinson, A. J., Flow Visualizations of the External Flow from a Converging Slot-Hole Film Cooling Geometry, Experiments in Fluids, vol. 38, no. 3,(2005) p.304–318.
DOI: 10.1007/s00348-004-0892-1
Google Scholar
[17]
Azzi, A., and Jubran, B. A., Numerical Modelling of Film Cooling from Converging Slot Hole, Heat Mass Transfer, vol. 43, no. 4, (2007), p.381–388.
DOI: 10.1007/s00231-006-0115-9
Google Scholar
[18]
Takeishi, K., Komiyama, M., Oda, Y., Egawa, Y., and Kitamura,T., Aerothermal Investigations on Mixing Flow Field of Film Cooling with Swirling Coolant Flow, Proc. ASME Turbo Expo Conf., Vancouver, British Columbia, Canada, (2011), GT2011-46838.
DOI: 10.1115/gt2011-46838
Google Scholar
[19]
Baheri Islami, S., Alavi-Tabrizi, S. P., Jubran, B. A., and Esmaeilzadeh, E., Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling, Heat Transfer Engineering, vol. 31, no. 10,(2010), p.889–906.
DOI: 10.1080/01457630903550317
Google Scholar
[20]
Murata, A.; Nishida, S.; Saito, H.; Iwamoto, K.; Okita, Y.; Nakamata, C. Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge. J. Turbomach. (2012), 134, 051033.
DOI: 10.1115/1.4004828
Google Scholar
[21]
Ling, J.; Elkins, C.J.; Eaton, J.K. The Effect of Land Taper Angle on Trailing Edge Slot Film Cooling. J. Turbomach. (2015), 137, 071003.
DOI: 10.1115/1.4029174
Google Scholar
[22]
Sinha, A. K., Bogard, D. G., and Crawford, M. E., , 'Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,,ASME J. Turbomach., Vol 113, (1991) p.442–449.
DOI: 10.1115/1.2927894
Google Scholar
[23]
Taslim, M.E.; Spring, S.D.; Mehlman, B.P. Experimental investigation of film cooling effectiveness for slots of various exit geometries. J. Thermophys. Heat Transf, Vol 6, (1992)p.302–307.
DOI: 10.2514/3.359
Google Scholar
[24]
Yang, Z.; Hu, H. Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique. J. Propuls. Power, Vol 27, (2011), p.700–709.
DOI: 10.2514/1.b34070
Google Scholar
[25]
Yang, Z.; Hu, H. An experimental investigation on the trailing edge cooling of turbine blades. Propuls. Power Res.Vol 1, (2012), p.36–47.
DOI: 10.1016/j.jppr.2012.10.007
Google Scholar
[26]
Martini, P.; Schulz, A.; Bauer, H.J. Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils with Various Internal Cooling Designs. J. Turbomach. Vol 128, (2005), p.196–205.
DOI: 10.1115/1.2103094
Google Scholar
[27]
Kebir,f; Khorsi,a. Numerical Approach at Flat Plate for Predicting the Film Cooling Effectiveness Part A: Effect Blowing Ratio; Diffusion Foundations, Vol. 16,(2018), pp.30-44.
DOI: 10.4028/www.scientific.net/df.16.30
Google Scholar
[28]
Kebir,f; Khorsi,a; Numerical Approach at Flat Plate for Predicting the Film Cooling Effectiveness Part B: Effect Injection Angle; Diffusion Foundations. Vol. 16,(2018), pp.57-71.
DOI: 10.4028/www.scientific.net/df.16.57
Google Scholar
[29]
Kebir,f; Azzi,a;Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction; Numerical Heat Transfer, Part A; Vo.73,6, (2018), pp.408-427.6.
DOI: 10.1080/10407782.2018.1444870
Google Scholar
[30]
Bardina, J.E., Huang, P.G. and Coakley, T.J., "Turbulence Modeling, Validation, Testing and Development, NASA Technical Memorandum 110446,. (see also Bardina, J.E., Huang, P.G. and Coakley, T., Turbulence Modeling Validation, AIAA,(1997), pp.97-2121).
DOI: 10.2514/6.1997-2121
Google Scholar
[31]
Menter, F.R., Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows", AIAA, (1993),pp.93-2906.
Google Scholar
[32]
Alzurfi N, Turan A, Nasser A, Alhusseny A. Numerical simulation of film cooling effectiveness in a rotating blade at high blowing ratios. The 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamic, Costa de Sol, (2016) pp.473-482.
Google Scholar
[33]
Silieti M, Divo E, Kassab A. The effect of conjugate heat transfer on film cooling effectiveness. International Journal of Computation and Methodology 56(5): (2010) pp.335-350. http://dx.doi.org/10.1080/10407790903508046.
DOI: 10.1080/10407790903508046
Google Scholar
[34]
Çengel Y, Boles M, Thermodynamics: An engineering approach. 8th Edition. McGraw-Hill Education, New York. (2015).
Google Scholar
[35]
Straub D, Sidwell T, Casleton K, Chien S, Chyu M. High temperature film cooling test facility and preliminary test. ASME Turbo Expo, Copenhagen, Denmark, (2012) pp.1661-1671. http://dx.doi.org/10.1115/GT2012-69767.
DOI: 10.1115/gt2012-69767
Google Scholar
[36]
Chyu M, Siw S. Recent advances of internal cooling techniques for gas turbine airfoils. Journal of Thermal Science and Engineering Applications, 5(2): 021008. (2013) http://dx.doi.org/10.1115/1.4023829.
DOI: 10.1115/1.4023829
Google Scholar
[37]
Rezazadeh R, Alizadeh M, Alireza F, Khaledi H. Turbine blade temperature calculation and life estimation - a sensitivity analysis. Propulsion and Power Research 2(2), (2013) pp.148-161. http://dx.doi.org/10.1016/j.jppr.2013.04.004.
DOI: 10.1016/j.jppr.2013.04.004
Google Scholar