Resin Injection Process in the Manufacture of a Polymer Composite Reinforced with NiTi Ribbons: A CFD Analysis

Article Preview

Abstract:

This work aims to numerically simulating the resin injection manufacturing process of a polymer composite,reinforced with ribbons of NiTishape memory alloy, using the software Ansys CFX®. The multiphase flow mathematical modeling was used to describe the transient and isothermal resin-air flow during the process. Results of the pressure fields, velocity andvolume fractionsof the involved phases are presented. The fluid flow inside the mold was compared withthe flow between parallel flat plates and showed to be consistent. Process parameters, such as resin volumetric flow rate, resin inlet and air outlet positions have a large influence in the mold filling time, volume and position of voids fractions inside de mold and final product quality.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. S. N. Paine, C. A. Rogers, R. A. Smith, Adaptive composite materials with shape memory actuators for cylinder and pressure vessels, J. Intellig. Mater. System. Struct., 6 (2) (1995) 210-219.

Google Scholar

[2] B. Liu, G. Dui, S. Yang, On the transformation behavior of functionally graded SMA composites subjected to thermal loading, European J. Mech. – A/Solids, 40 (2013)139-147.

DOI: 10.1016/j.euromechsol.2013.01.009

Google Scholar

[3] A. Kaushal, A. Vardhan, R. S. S. Rawat, Intelligent material for modern age: a review.J. Mech Civil Eng., 13 (3) (2016). pp.10-15.

Google Scholar

[4] C. A. X. Ramos, Smart materials composite, Doctoral Thesis. Science and Engineering, Porto Engineering Faculty, Porto, Portugal (2006). (In Portuguese).

Google Scholar

[5] W. G. Drossel, H. Kunze, A. Bucht, L. Weisheit, K. Page, Smart3 – smart materials for SMA Procedia CIRP, 36 (2015)211 – 216.

DOI: 10.1016/j.procir.2015.01.055

Google Scholar

[6] B. López-Walle, E. López-Cuellar, E. Reyes-Melo, O. Lomas-González, W. B. Castro, Smart polymer composite based on a NiTi ribbon and magnetic hybrid material actuators with multiphysic transduction, Actuators, 4 (2015) 301 – 313.

DOI: 10.3390/act4040301

Google Scholar

[7] K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys. Intermetallics. 7(1999)511 – 528.

DOI: 10.1016/s0966-9795(98)00070-3

Google Scholar

[8] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni based shape memory alloys, Prog. Mater. Sci.50 (5) (2005)511 – 678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[9] W. S. Castilho. Thermomechanical characterization of the hybrid composites with shape memory. Master´s Thesis. Mechatronic Systems, Brasilia University, Brasília, Distrito Federal (2008). (In Portuguese).

Google Scholar

[10] W. D. Callister. Science and engineering of materials: An introduction. 5th ed., LTC, (2006).

Google Scholar

[11] F. F. Luz. Comparative analysis of fluid flow in RTM experiments with commercial app. Master´s Thesis. Metallurgical, Materials and Mines Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (2011) (In Portuguese).

DOI: 10.29289/259453942018v28s1059

Google Scholar

[12] V. Michaud, Can shape memory alloy composites be smart, ScriptaMaterialia, 50 (2004)249 – 253.

Google Scholar

[13] M. Sippola, T. Lindroos, T. Brander, Adaptive composite structures in shape control application.J. Struct. Mech., 40 (1) (2007)65 – 79.

Google Scholar

[14] G. Diodati, S. Ameduri, A. Concilio, Adaptive vibration control through a SMA embedded panel. J. Theoret. Appl. Mech. 45 (4) (2007) 919 – 930.

Google Scholar

[15] S. Lacasse, P. Terriault, C. Simoneau, V. Brailovski, Design, manufacturing and testing of an adaptive composite panel with embedded shape memory alloy actuators, J. Intelligent Mater. System. Struct. 26 (15) (2015)2055 – (2072).

DOI: 10.1177/1045389x14549862

Google Scholar

[16] H. Lei, Z. Wang, B. Zhou, I. Tong, X. Wang, Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model, Mater. Design. 40 (2012)138 – 147.

DOI: 10.1016/j.matdes.2012.03.037

Google Scholar

[17] S. S. Pulla, H. E. Karaca, Y. C. Lu, Numerical design of shape memory polymer composites with temperature-responsive SMA fillers. Compos. Part B. vol.96 (2016). p.287 – 294.

DOI: 10.1016/j.compositesb.2016.04.044

Google Scholar

[18] C. A. Araújo Mota, A. S. Cavalcanti Leal, C. J. Araújo, A. G. B. Lima, S. K. B. M. Silva,Thermal behavior of polymer composite reinforced with NiTi shape memory alloys, Diff. Found.. 10 (2017)39 – 54.

DOI: 10.4028/www.scientific.net/df.10.39

Google Scholar

[19] X. Wang, J. Zhang, Z. Wang, S. Zhou, X. Sun, Effects of interphase properties in unidirectional fiber reinforced composite materials,Mater. Design, 32 (2011)3486 – 3492.

DOI: 10.1016/j.matdes.2011.01.029

Google Scholar

[20] C. Simoneau, P. Terriault, S. Lacasse, V. Brailovski, Adaptive composite panel with embedded SMA actuators: modeling and validation, Mech. Based Design Struct. Machines, 42 (2014)174– 192.

DOI: 10.1080/15397734.2013.864246

Google Scholar

[21] Z. T. Vilar, C. J. Araujo, A. G. Santos, Estudo de propriedades dinâmico-mecânicas de um compósito aeronáutico de CFRP. Polym.. 26 Special Issue (2016)16 - 24.

DOI: 10.1590/0104-1428.1926

Google Scholar

[22] M. Meo, E. Antonucci, P. Duclaux, M. Giordano, Finite element simulation of low velocity impact on shape memory alloy composite plates, Compos. Struct.71 (2005)337 – 342.

DOI: 10.1016/j.compstruct.2005.09.029

Google Scholar

[23] Y. Payandeh, F. Meraghni, E. Patoor, A. Eberhardt, Study of the martensitic transformation in NiTi-epoxy smart composite and its effect the overall behavior, Mater. Design, 39 (2012)104 – 110.

DOI: 10.1016/j.matdes.2012.02.041

Google Scholar

[24] S. Silva, C. Araújo, T. Andrade, A. Lima, V. Oliveira, Applying CFD in manufacturing of polymer composite reinforced with shape memory alloy via Resin Transfer Molding, Inter. J. Multiphysics, 11 (1) (2017)71 – 82.

DOI: 10.21152/1750-9548.11.1.71

Google Scholar

[25] R. W. Fox, P. J. Pritchard, A. T. McDonald, Introduction to fluid mechanics, octave. ed. New Jersey: John Wiley & Sons, (2011).

Google Scholar

[26] D. H. Lee, W. I. Lee, M. K. Kang, Analysis and minimization of void formation during resin transfer molding process. Compos. Sci. Technol. 66 (2006)3281 – 3289.

DOI: 10.1016/j.compscitech.2005.07.008

Google Scholar

[27] T. Okabe, Y. Oya, G. Yamamato, J. Sato, T. Matsumiya, R. Matsuzaki, S. Yashiro, S. Obayashi, Multi-objective optimization for resin transfer molding process. Compos. Part A, 92 (2017)1 – 9.

DOI: 10.1016/j.compositesa.2016.09.023

Google Scholar