Microstructure and Properties of Lead-Free Perovskite Ceramics on the Base of KNN Perovskite

Article Preview

Abstract:

The influence of LiSbO3 on the structure, microstructure, dielectric, ferroelectric and local piezoelectric properties of (K0.5Na0.5)NbO3 ceramics has been studied. Changes in unit cell parameters correlated with ionic radii changes and high effective local d33 piezoelectric coefficient values were observed depending on solid solutions compositions.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 27)

Pages:

90-98

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Zhang, R. Xia, and R.T. Shrout, Lead-Free Piezoelectric Ceramics: Alternatives for PZT? J. Electroceram. 19 (2007) 251-257.

DOI: 10.1007/s10832-007-9056-z

Google Scholar

[2] T. Takenaka, H. Nagata, and Y. Hiruma, Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 47 (2008) 3787-3801.

DOI: 10.1143/jjap.47.3787

Google Scholar

[3] P. K. Panda, Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci. 44 (2009) 5049-5062.

DOI: 10.1007/s10853-009-3643-0

Google Scholar

[4] D. Damjanovich, N. Klein, J. Li and V. Porokhonskyy, What can be expected from lead-free piezoelectric materials?, Funct. Mater. Lett. 3 (2010) 5-13.

DOI: 10.1142/s1793604710000919

Google Scholar

[5] D.Q. Xiao, Progresses and further considerations on the research of perovskite lead-free piezoelectric ceramics, J. Adv. Dielectr. 1 (2011) 33-40.

DOI: 10.1142/s2010135x11000045

Google Scholar

[6] Y.Q. Lu and Y.X. Li, A Review on Lead-Free Piezoelectric Ceramics Studies in China, J. Adv. Dielectr. 1 (2011) 269-288.

Google Scholar

[7] I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: Current status and perspectives, J. Adv. Dielectr. 3 (2013) 1330002 (22 pages).

DOI: 10.1142/s2010135x13300028

Google Scholar

[8] J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, (K, Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges, J. Am. Ceram. Soc. 96 (2013) 3677-3696.

DOI: 10.1111/jace.12715

Google Scholar

[9] J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries, Chem. Rev. 115 (2015) 2559-2595.

DOI: 10.1021/cr5006809

Google Scholar

[10] P.K. Panda and B. Sahoo, PZT to Lead-Free Piezo Ceramics, Ferroelectrics 474 (2015) 128-143.

DOI: 10.1080/00150193.2015.997146

Google Scholar

[11] C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, Lead-free piezoceramics. Where to move on? J. Materiomics 2 (2016) 1-24.

DOI: 10.1016/j.jmat.2015.12.002

Google Scholar

[12] Y.-J. Dai, X.-W. Zhang, and Ke-Pi Chen, Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics, Appl. Phys. Lett. 94 (2009) 042905.

DOI: 10.1063/1.3076105

Google Scholar

[13] H.-Y. Park, C.-W. Ahn, H.-C. Song, J.-H. Lee, and S. Nahma, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics, App. Phys. Lett. 89 (2006) 062906.

DOI: 10.1063/1.2335816

Google Scholar

[14] J. Fang, X. Wang, R. Zuo, Z. Tian, C. Zhong, L. Li, Narrow sintering temperature window for (K,Na)NbO3-based lead-free piezoceramics caused by compositional segregation, Phys. Status Solidi A. 208 (2011) 791-794.

DOI: 10.1002/pssa.201026500

Google Scholar

[15] K. Wang, J.-F. Li, J. (K,Na)NbO3-based lead-free piezoceramics: Phase transition, sintering and property enhancement, Adv. Ceramics 1 (2012) 24-37.

DOI: 10.1007/s40145-012-0003-3

Google Scholar

[16] R. Zuo, J. Roedel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics, J. Am. Ceram. Soc. 89 (2006) 2010-2015.

Google Scholar

[17] S. Zhang, R. Xia, T.R. Shrout, Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range, Appl. Phys. Lett. 91 (2007) 132913.

DOI: 10.1063/1.2794400

Google Scholar

[18] J. Tellier, B. Malič, B. Dkhil, D. Jenko, J. Cilensek, M. Kosec, Crystal structure and phase transitions of sodium potassium niobate perovskites, Solid State Sci. 11 (2009) 320-324.

DOI: 10.1016/j.solidstatesciences.2008.07.011

Google Scholar

[19] B. Malič, J. Koruza, J. Hreščak, J. Bernard, K. Wang, J.G. Fisher, A. Benčan, Sintering of lead-free piezoelectric sodium potassium niobate ceramics, Materials 12, (2015) 8117-8146.

DOI: 10.3390/ma8125449

Google Scholar

[20] E.D. Politova, G.M. Kaleva, N.V. Golubko, A.V. Mosunov, V.S. Akinfiev, S.Yu. Stefanovich, E.A. Fortalnova, Influence of NaCl/LiF Additives on Structure, Microstructure and Phase Transitions of (K0.5Na0.5)NbO3 Ceramics, Ferroelectrics 489 (2015) 147-155.

DOI: 10.1080/00150193.2015.1070248

Google Scholar

[21] E.D. Politova, N.V. Golubko, G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, S. Yu. Stefanovich, D.A. Kiselev, A.M. Kislyuk, P.K. Panda, Processing and characterization of lead-free ceramics on the base of sodium-potassium niobate, J. Adv. Diel. 8 (2018) 1850004.

DOI: 10.1142/s2010135x18500042

Google Scholar

[22] M. E. Ringgaard and T.Wurlitzer, Lead-free piezoceramics based structure, microstructure and electrical properties of on alkali niobates, J. Eur . Ceram. Soc. 25 (2005) 2701-2706.

DOI: 10.1016/j.jeurceramsoc.2005.03.126

Google Scholar

[23] E.D. Politova, D.A. Strebkov, D.A. Belkova, , G.M. Kaleva, N.V. Golubko, V. Mosunov, N.V. Sadovskaya, P.K. Panda, Relaxation Effects in Nonstoichiometric NBT-Based Ceramics, Defect and Diffusion Forum, 391 (2019) 95-100.

DOI: 10.4028/www.scientific.net/ddf.391.95

Google Scholar

[24] E. D. Politova, N. V. Golubko, A. V. Mosunov, N. V. Sadovskaya, G. M. Kaleva, D. A. Kiselev & A. M. Kislyuk, Influence of additives on structure and ferroelectric properties of NBT-BT-BMT ceramics, Ferroelectrics, 531 (2018) 22-30.

DOI: 10.1080/00150193.2018.1497406

Google Scholar

[25] V.V. Zhurov, S.A. Ivanov, PROFIT a program for powder diffraction data evaluation for IBM PC with a graphical user interface. Crystallography Reports, 42 (1997) 239-243.

Google Scholar

[26] Dunmin Lin, K. W. Kwok, K. H. Lam, and H. L. W. Chan. Structure and electrical properties of K0.5Na0.5NbO3 –LiSbO3 lead-free piezoelectric ceramics. Journal of Applied Physics, 101 (2007) 074111.

DOI: 10.1063/1.2715486

Google Scholar

[27] V.V. Shvartsman, D.C. Lupascu, Lead-Free Relaxor Ferroelectrics, J. Amer. Ceram. Soc. 95 (2012) 1-26.

DOI: 10.1111/j.1551-2916.2011.04952.x

Google Scholar

[28] W. Kleemann, Random-field induced antiferromagnetic, ferroelectric and structural domain states, Int. J. Mod. Phys. B 7 (1993) 2469-2507.

DOI: 10.1142/s0217979293002912

Google Scholar

[29] S. Jesse, A.P. Baddorf, S.V. Kalinin, Switching spectroscopy piezoresponse force microscopy of ferroelectric materials, Appl. Phys. Lett. 88 (2006) 062908.

DOI: 10.1063/1.2172216

Google Scholar

[30] H. Trivedi, V.V. Shvartsman, D.C. Lupascu, M.S. Medeiros, R.C. Pullar, A.L. Kholkin, P. Zelenovskiy, A. Sosnovskikh, V.Y. Shur, Local manifestations of a static magnetoelectric effect in nanostructured BaTiO3–BaFe12O9 composite multiferroics, Nanoscale 7 (2015) 4489-4496.

DOI: 10.1039/c4nr05657d

Google Scholar