[1]
D. Sameer Kumar, C. Tara Sasanka, K. Ravindra, K.N.S. Suman, Magnesium and its alloys in automotive applications – a review, Am. J. Mater. Sci. Technol. 4 (2015) 12–30.
Google Scholar
[2]
B. L. Mordike, T. Ebert, Magnesium: Properties - applications - potential. Mater. Sci. Eng. A. 302 (2001) 37–45.
Google Scholar
[3]
C.J. Bettles, M.A. Gibson, Current Wrought Magnesium Alloys: Strengths and Weaknesses. JOM. 57 (2005) 46-49.
DOI: 10.1007/s11837-005-0095-0
Google Scholar
[4]
S. You, Y. Huang, K. U. Kainer, N. Hort, Recent research and developments on wrought magnesium alloys. J. Magnes. Alloys. 5 (2017) 239–253.
DOI: 10.1016/j.jma.2017.09.001
Google Scholar
[5]
G. Ben-Hamu, D. Eliezer, K. S. Shin, The role of Si and Ca on new wrought Mg-Zn-Mn based alloy. Mater. Sci. Eng. A. 447 (2007) 35–43.
DOI: 10.1016/j.msea.2006.10.059
Google Scholar
[6]
G. Song, A. Atrens, Understanding magnesium corrosion, Adv. Eng. Mater. 5 (2003) 837-858.
Google Scholar
[7]
K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Corrosion of magnesium alloys: the role of alloying, Int. Mater. Rev. 60 (2015) 169-194.
DOI: 10.1179/1743280414y.0000000046
Google Scholar
[8]
M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193.
DOI: 10.1016/j.pmatsci.2017.04.011
Google Scholar
[9]
G. Song, A. Atrens, X. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corros. Sci. 40 (1998) 1769–1791.
DOI: 10.1016/s0010-938x(98)00078-x
Google Scholar
[10]
A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corrosion Sci. 50 (2008) 823-834.
DOI: 10.1016/j.corsci.2007.11.005
Google Scholar
[11]
A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú Jr., Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochim. Acta 53 (2008) 7890-7902.
DOI: 10.1016/j.electacta.2008.06.001
Google Scholar
[12]
M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, L. Wagner, The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures, Corros. Sci. 50 (2008) 1766-1778.
DOI: 10.1016/j.corsci.2008.03.003
Google Scholar
[13]
J.A. Boyer, The corrosion of magnesium and of the magnesium aluminium alloys containing manganese, Report 248, American Magnesium Corporation, Niagara Falls, NY, USA, (1926).
Google Scholar
[14]
M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, G.A. Botton, The cathodic behaviour of Al-Mn precipitates during atmospheric and saline aqueous corrosion of a sand-cast AM50 alloy, Corros. Sci. 83 (2014) 299–309.
DOI: 10.1016/j.corsci.2014.02.030
Google Scholar
[15]
P. Metalnikov, G. Ben-Hamu, Y. Templeman, K. S. Shin, L. Meshi, The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys. Mater. Charact. 145 (2018) 101–115.
DOI: 10.1016/j.matchar.2018.08.033
Google Scholar
[16]
D. Daloz, P. Steinmetz, G. Michot, Corrosion behavior of rapidly solidified magnesium-aluminum-zinc alloys. Corrosion (Houston). 53 (1997) 944–954.
DOI: 10.5006/1.3290279
Google Scholar
[17]
G. Ben-Hamu, D. Eliezer, C.E. Cross, T. Böllinghaus, The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet. Mater. Sci. Eng. A. 452–453 (2007) 210–218.
DOI: 10.1016/j.msea.2006.12.122
Google Scholar
[18]
N.D. Nam, M. Mathesh, T.V. Lee, H.T. Nguyen, Corrosion behavior of Mg–5Al–xZn alloys in 3.5 wt.% NaCl solution. J. Alloy. Compd. 616 (2014) 662–668.
DOI: 10.1016/j.jallcom.2014.07.014
Google Scholar
[19]
H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys, J. Alloy. Compd. 695 (2017) 2330-2338.
DOI: 10.1016/j.jallcom.2016.11.100
Google Scholar
[20]
G.L. Song, Effect of tin modification on corrosion of AM70 magnesium alloy, Corros. Sci. 51 (2009) 2063-2070.
DOI: 10.1016/j.corsci.2009.05.031
Google Scholar
[21]
X. Liu, D. Shan, Y. Song, R. Chen, E. Han, Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy, Electrochim. Acta 56 (2011) 2582-2590.
DOI: 10.1016/j.electacta.2010.12.030
Google Scholar
[22]
K.C. Park, B.H. Kim, H. Kimura, Y.H. Park, I.M. Park, Microstructure and corrosion properties of Mg-xSn-5Al-1Zn (x ¼ 0, 1, 5 and 9 mass%) alloys, Mater. Trans. 51 (2010) 474-476.
DOI: 10.2320/matertrans.m2009308
Google Scholar
[23]
H.-Y. Ha, J.-Y. Kang, J. Yang, C.D. Yim, B.S. You, Role of Sn in corrosion and passive behavior of extruded Mg-5 wt%Sn alloy, Corros. Sci. 102 (2016) 355-362.
DOI: 10.1016/j.corsci.2015.10.028
Google Scholar
[24]
P. Metalnikov, G. Ben-Hamu, D. Eliezer, K. S. Shin, Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy, J. Alloy. Compd. 777 (2019) 835-849.
DOI: 10.1016/j.jallcom.2018.11.003
Google Scholar
[25]
E. Dabah, G. Ben-Hamu, V. Lisitsyn, D. Eliezer, K. S. Shin, The influence of Ca on the corrosion behavior of new die cast Mg-Al-based alloys for elevated temperature applications. J. Mater. Sci. 45 (2010) 3007–3015.
DOI: 10.1007/s10853-010-4302-1
Google Scholar
[26]
J. Yang, J. Peng, E. A. Nyberg, F. S. Pan, Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy. Appl. Surf. Sci. 369 (2016) 92–100.
DOI: 10.1016/j.apsusc.2016.01.283
Google Scholar
[27]
W. C. Kim, J. G. Kim, J. Y. Lee, H. K. Seok, Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater. Lett. 62 (2008) 4146–4148.
DOI: 10.1016/j.matlet.2008.06.028
Google Scholar
[28]
K. H. Kim, N. D. Nam, J. G. Kim, K. S. Shin, H. C. Jung, Effect of calcium addition on the corrosion behavior of Mg-5Al alloy. Intermetallics. 19 (2011) 1831–1838.
DOI: 10.1016/j.intermet.2011.07.024
Google Scholar
[29]
X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Thermodynamic assessment of the aluminum-manganese (Al-Mn) binary phase diagram, J. Phase. Equilib. 20 (1999) 45–56.
DOI: 10.1361/105497199770335938
Google Scholar
[30]
J. Tkacz, J. Minda, S. Fintová, J. Wasserbauer, Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy. Materials. 9 (2016) 43-48.
DOI: 10.3390/ma9110925
Google Scholar
[31]
H. Wang, Y. Song, J. Yu, D. Shan, H. Han, Characterization of filiform corrosion of Mg–3Zn Mg alloy, J. Electrochem. Soc. 164 (2017) C574–C580.
DOI: 10.1149/2.1221709jes
Google Scholar
[32]
G. Song, A. Atrens, D. StJohn, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions, Corros Sci, 39 (10–11) (1997), 1981-2004.
DOI: 10.1016/s0010-938x(97)00090-5
Google Scholar
[33]
R.C. Zeng, J. Zhang, W.J. Huang, W. Dietze, K.U. Kainer, C. Blawert, K. Wei, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous. Metals Soc. China 16 (2006) s763–s771.
DOI: 10.1016/s1003-6326(06)60297-5
Google Scholar
[34]
H. Cao, C. Zhang, J. Zhu, G. Cao, S. Kou, R. Schmid-Fetzer, Y.A. Chang, Experiments coupled with modeling to establish the Mg-rich phase equilibria of Mg-Al-Ca. Acta Mater. 56 (2008) 5245–5254.
DOI: 10.1016/j.actamat.2008.07.003
Google Scholar
[35]
B. Kondori, R. Mahmudi, Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy. Mater. Sci. Eng. A. 527 (2010) 2014–(2021).
DOI: 10.1016/j.msea.2009.11.043
Google Scholar
[36]
S. M. Liang, R. S. Chen, J. J. Blandin, M. Suery, E. H. Han, Thermal analysis and solidification pathways of Mg-Al-Ca system alloys. Mater. Sci. Eng. A. 480 (2008) 365–372.
DOI: 10.1016/j.msea.2007.07.025
Google Scholar
[37]
S.-M. Baek, H.J. Kim, H.Y. Jeong, S.-D. Sohn, H.-J. Shin, K.-J. Choi, K.-S. Lee, J.G. Lee, C.D. Yim, B.S. You, H.-Y. Ha, S.S. Park, Effect of alloyed Ca on the microstructure and corrosion properties of extruded AZ61 Mg alloy. Corros. Sci. 112, (2016) 44–53.
DOI: 10.1016/j.corsci.2016.07.011
Google Scholar
[38]
Z. Qiao, Z. Shi, N. Hort, N.I. Zainal Abidin, A. Atrens, Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting, Corros. Sci. 61 (2012) 185-207.
DOI: 10.1016/j.corsci.2012.04.030
Google Scholar