Development of New Wrought Mg Alloys: Improving the Corrosion Resistance by Addition of Alloying Elements

Article Preview

Abstract:

Magnesium (Mg) alloys constitute an attractive structural material for transportation industries, due to their low density and high strength/weight ratio. However, high susceptibility to corrosion of Mg alloys limits their use. Therefore, there is a growing interest for development of new Mg alloys with good mechanical properties and superior corrosion resistance. Production of wrought Mg alloys results in enhancement of mechanical properties, whereas addition of alloying elements may result in improved corrosion behavior. In this study we distinguish the role of aluminum, zinc, tin and calcium additions on the corrosion performance of new wrought Mg alloys. Overall, addition of alloying elements resulted in precipitation of second phase particles with cathodic behavior (relatively to Mg matrix). This enhanced the micro-galvanic effects and the corrosion resistance in short periods of immersion was deteriorated. However, in longer periods of immersion the passive characteristics of the oxide layer played a significant role in improving the alloys' corrosion resistance. The contribution of each element to the oxide layer will be discussed in detail. In general, the quantities of alloying element should be sufficient to stabilize the corrosion products layer; yet as low as possible, in order to reduce the micro-galvanic effects.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 27)

Pages:

50-60

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Sameer Kumar, C. Tara Sasanka, K. Ravindra, K.N.S. Suman, Magnesium and its alloys in automotive applications – a review, Am. J. Mater. Sci. Technol. 4 (2015) 12–30.

Google Scholar

[2] B. L. Mordike, T. Ebert, Magnesium: Properties - applications - potential. Mater. Sci. Eng. A. 302 (2001) 37–45.

Google Scholar

[3] C.J. Bettles, M.A. Gibson, Current Wrought Magnesium Alloys: Strengths and Weaknesses. JOM. 57 (2005) 46-49.

DOI: 10.1007/s11837-005-0095-0

Google Scholar

[4] S. You, Y. Huang, K. U. Kainer, N. Hort, Recent research and developments on wrought magnesium alloys. J. Magnes. Alloys. 5 (2017) 239–253.

DOI: 10.1016/j.jma.2017.09.001

Google Scholar

[5] G. Ben-Hamu, D. Eliezer, K. S. Shin, The role of Si and Ca on new wrought Mg-Zn-Mn based alloy. Mater. Sci. Eng. A. 447 (2007) 35–43.

DOI: 10.1016/j.msea.2006.10.059

Google Scholar

[6] G. Song, A. Atrens, Understanding magnesium corrosion, Adv. Eng. Mater. 5 (2003) 837-858.

Google Scholar

[7] K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Corrosion of magnesium alloys: the role of alloying, Int. Mater. Rev. 60 (2015) 169-194.

DOI: 10.1179/1743280414y.0000000046

Google Scholar

[8] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193.

DOI: 10.1016/j.pmatsci.2017.04.011

Google Scholar

[9] G. Song, A. Atrens, X. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corros. Sci. 40 (1998) 1769–1791.

DOI: 10.1016/s0010-938x(98)00078-x

Google Scholar

[10] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corrosion Sci. 50 (2008) 823-834.

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[11] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú Jr., Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochim. Acta 53 (2008) 7890-7902.

DOI: 10.1016/j.electacta.2008.06.001

Google Scholar

[12] M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, L. Wagner, The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures, Corros. Sci. 50 (2008) 1766-1778.

DOI: 10.1016/j.corsci.2008.03.003

Google Scholar

[13] J.A. Boyer, The corrosion of magnesium and of the magnesium aluminium alloys containing manganese, Report 248, American Magnesium Corporation, Niagara Falls, NY, USA, (1926).

Google Scholar

[14] M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, G.A. Botton, The cathodic behaviour of Al-Mn precipitates during atmospheric and saline aqueous corrosion of a sand-cast AM50 alloy, Corros. Sci. 83 (2014) 299–309.

DOI: 10.1016/j.corsci.2014.02.030

Google Scholar

[15] P. Metalnikov, G. Ben-Hamu, Y. Templeman, K. S. Shin, L. Meshi, The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys. Mater. Charact. 145 (2018) 101–115.

DOI: 10.1016/j.matchar.2018.08.033

Google Scholar

[16] D. Daloz, P. Steinmetz, G. Michot, Corrosion behavior of rapidly solidified magnesium-aluminum-zinc alloys. Corrosion (Houston). 53 (1997) 944–954.

DOI: 10.5006/1.3290279

Google Scholar

[17] G. Ben-Hamu, D. Eliezer, C.E. Cross, T. Böllinghaus, The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet. Mater. Sci. Eng. A. 452–453 (2007) 210–218.

DOI: 10.1016/j.msea.2006.12.122

Google Scholar

[18] N.D. Nam, M. Mathesh, T.V. Lee, H.T. Nguyen, Corrosion behavior of Mg–5Al–xZn alloys in 3.5 wt.% NaCl solution. J. Alloy. Compd. 616 (2014) 662–668.

DOI: 10.1016/j.jallcom.2014.07.014

Google Scholar

[19] H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys, J. Alloy. Compd. 695 (2017) 2330-2338.

DOI: 10.1016/j.jallcom.2016.11.100

Google Scholar

[20] G.L. Song, Effect of tin modification on corrosion of AM70 magnesium alloy, Corros. Sci. 51 (2009) 2063-2070.

DOI: 10.1016/j.corsci.2009.05.031

Google Scholar

[21] X. Liu, D. Shan, Y. Song, R. Chen, E. Han, Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy, Electrochim. Acta 56 (2011) 2582-2590.

DOI: 10.1016/j.electacta.2010.12.030

Google Scholar

[22] K.C. Park, B.H. Kim, H. Kimura, Y.H. Park, I.M. Park, Microstructure and corrosion properties of Mg-xSn-5Al-1Zn (x ¼ 0, 1, 5 and 9 mass%) alloys, Mater. Trans. 51 (2010) 474-476.

DOI: 10.2320/matertrans.m2009308

Google Scholar

[23] H.-Y. Ha, J.-Y. Kang, J. Yang, C.D. Yim, B.S. You, Role of Sn in corrosion and passive behavior of extruded Mg-5 wt%Sn alloy, Corros. Sci. 102 (2016) 355-362.

DOI: 10.1016/j.corsci.2015.10.028

Google Scholar

[24] P. Metalnikov, G. Ben-Hamu, D. Eliezer, K. S. Shin, Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy, J. Alloy. Compd. 777 (2019) 835-849.

DOI: 10.1016/j.jallcom.2018.11.003

Google Scholar

[25] E. Dabah, G. Ben-Hamu, V. Lisitsyn, D. Eliezer, K. S. Shin, The influence of Ca on the corrosion behavior of new die cast Mg-Al-based alloys for elevated temperature applications. J. Mater. Sci. 45 (2010) 3007–3015.

DOI: 10.1007/s10853-010-4302-1

Google Scholar

[26] J. Yang, J. Peng, E. A. Nyberg, F. S. Pan, Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy. Appl. Surf. Sci. 369 (2016) 92–100.

DOI: 10.1016/j.apsusc.2016.01.283

Google Scholar

[27] W. C. Kim, J. G. Kim, J. Y. Lee, H. K. Seok, Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater. Lett. 62 (2008) 4146–4148.

DOI: 10.1016/j.matlet.2008.06.028

Google Scholar

[28] K. H. Kim, N. D. Nam, J. G. Kim, K. S. Shin, H. C. Jung, Effect of calcium addition on the corrosion behavior of Mg-5Al alloy. Intermetallics. 19 (2011) 1831–1838.

DOI: 10.1016/j.intermet.2011.07.024

Google Scholar

[29] X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Thermodynamic assessment of the aluminum-manganese (Al-Mn) binary phase diagram, J. Phase. Equilib. 20 (1999) 45–56.

DOI: 10.1361/105497199770335938

Google Scholar

[30] J. Tkacz, J. Minda, S. Fintová, J. Wasserbauer, Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy. Materials. 9 (2016) 43-48.

DOI: 10.3390/ma9110925

Google Scholar

[31] H. Wang, Y. Song, J. Yu, D. Shan, H. Han, Characterization of filiform corrosion of Mg–3Zn Mg alloy, J. Electrochem. Soc. 164 (2017) C574–C580.

DOI: 10.1149/2.1221709jes

Google Scholar

[32] G. Song, A. Atrens, D. StJohn, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions, Corros Sci, 39 (10–11) (1997), 1981-2004.

DOI: 10.1016/s0010-938x(97)00090-5

Google Scholar

[33] R.C. Zeng, J. Zhang, W.J. Huang, W. Dietze, K.U. Kainer, C. Blawert, K. Wei, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous. Metals Soc. China 16 (2006) s763–s771.

DOI: 10.1016/s1003-6326(06)60297-5

Google Scholar

[34] H. Cao, C. Zhang, J. Zhu, G. Cao, S. Kou, R. Schmid-Fetzer, Y.A. Chang, Experiments coupled with modeling to establish the Mg-rich phase equilibria of Mg-Al-Ca. Acta Mater. 56 (2008) 5245–5254.

DOI: 10.1016/j.actamat.2008.07.003

Google Scholar

[35] B. Kondori, R. Mahmudi, Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy. Mater. Sci. Eng. A. 527 (2010) 2014–(2021).

DOI: 10.1016/j.msea.2009.11.043

Google Scholar

[36] S. M. Liang, R. S. Chen, J. J. Blandin, M. Suery, E. H. Han, Thermal analysis and solidification pathways of Mg-Al-Ca system alloys. Mater. Sci. Eng. A. 480 (2008) 365–372.

DOI: 10.1016/j.msea.2007.07.025

Google Scholar

[37] S.-M. Baek, H.J. Kim, H.Y. Jeong, S.-D. Sohn, H.-J. Shin, K.-J. Choi, K.-S. Lee, J.G. Lee, C.D. Yim, B.S. You, H.-Y. Ha, S.S. Park, Effect of alloyed Ca on the microstructure and corrosion properties of extruded AZ61 Mg alloy. Corros. Sci. 112, (2016) 44–53.

DOI: 10.1016/j.corsci.2016.07.011

Google Scholar

[38] Z. Qiao, Z. Shi, N. Hort, N.I. Zainal Abidin, A. Atrens, Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting, Corros. Sci. 61 (2012) 185-207.

DOI: 10.1016/j.corsci.2012.04.030

Google Scholar