Analytical Investigation on the Evolution and Growth of β-Ti and Fe-Nb-Based Intermetallics in Diffusion Coupled Joints of Ti6Al4V|Nb|SS

Article Preview

Abstract:

Herein, solid-state diffusion-coupled joints (DCJs) were prepared in vacuum between stainless steel (SS) and Ti6Al4V by means of a pure niobium (Nb) interlayer (~200-μm thickness) using uni-axial compressive pressure of 4 MPa at 875 °C for 15 to 120 min. Interfacial characterization revealed the existence of successive layer wise Fe–Nb-based intermetallics like FeNb+(Nb) and Fe2Nb at Nb|SS interfaces of DCJs processed from 60 to 120 min, but the DCJs processed for shorter duration (from 15 to 30 min) do not reveal any intermetallics; however, the DCJs processed for 45 min revealed a single reaction layer of FeNb whereas that of Ti6Al4V|Nb interfaces revealed solid solution behaviour for all bonding time intervals. Required chemical analysis (in at. pct) of the reaction products was found out using spectroscope and X-ray diffractometer. Mechanical characterization (at 32 °C) of the DCJs was carried out with a microhardness tester and tensile testing facility. Ti6Al4V|Nb interface experienced a hardness of ~298 HV (for all bonding time), whereas Nb|SS interface experienced ~200 HV for 15 and 30 min and ~650 HV for 45 min and longer. DCJs treated for 60 min have better strength properties. Manifestation of reaction layers: FeNb, FeNb+(Nb), and Fe2Nb have significant effect on the strength. From the interfacial microhardness, path and surface of fracture surfaces characterizations, it was revealed that failure of the DCJs was transmitted seemingly along Nb|SS interfaces. The analytical finding of intrinsic diffusivity of Ti atoms in Nb along Ti6Al4V|Nb interface is higher by one order of magnitude than the diffusivity results of Fe atoms in Nb along the Nb|SS interface. Experimental evidences show that the growth of the reaction products along Ti6Al4V|Nb interface (adj. R-Square=0.982) and Nb|SS interface (adj. R-Square=0.999) follows a parabolic law. Recently, researchers considered diffusion coupling as the key technology to fabricate Ti|Al|Al-Cf biomimetic structure, graphite|Nb|Cu for fusion reactor devices, Ni|Ni3Al for MEMS applications, hybrid heat exchangers for nuclear applications, etc.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 27)

Pages:

3-24

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials, CIRP Annals-Manufacturing Technol. 64 (2015) 679–699.

DOI: 10.1016/j.cirp.2015.05.006

Google Scholar

[2] F.C. Campbell, Joining—Understanding the Basics, ASM International, Materials Park, OH, (2011).

Google Scholar

[3] O.T. Inal, A. Szeekeet, D.J. Vigueras, H. Pak, Explosive welding of Ti–6Al–4V to mildsteel substrates, J. Vac. Sci. Technol. A 3 (1985) 2605–2609.

DOI: 10.1116/1.572843

Google Scholar

[4] M. Fazel-Najafabadi, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Joining of CP-Ti to 304 stainless steel using friction stir welding technique, Mater. Des. 31 (2010) 4800–4807.

DOI: 10.1016/j.matdes.2010.05.003

Google Scholar

[5] H. Dong, L. Yu, D. Deng, W. Zhou, C. Dong, Effect of Post-weld Heat Treatment on Properties of Friction Welded Joint Between TC4 Titanium Alloy and 40Cr Steel Rods, J. Mater. Sci. Technol. 31 (2015) 962–968.

DOI: 10.1016/j.jmst.2014.09.021

Google Scholar

[6] N.F. Kazakov, Diffusion Bonding of Materials, Mir Publishers, Moscow, (1985).

Google Scholar

[7] Y. Tang, B. Han, L. Luo, X. Wang, Y. Su, J. Guo, H. Fu, Microstructure and mechanical properties of bio-inspired Ti/Al/Al-Cf multi-layered composites, Adv. Eng. Mater. 21 (2019) 1800722.

DOI: 10.1002/adem.201800722

Google Scholar

[8] L. Xing, J. Lin, M. Huang, W. Yang, Joining of graphite to copper with Nb interlayer: microstructure and mechanical properties, Adv. Eng. Mater. 21 (2019) 1800810.

DOI: 10.1002/adem.201800810

Google Scholar

[9] C. Zhang, K. Feng, Z. Li, F. Lu, J. Huang, Y. Wu, Microstructure and mechanical properties of sputter deposited Ni/Ni3Al multilayer films at elevated temperature, Appl. Surf. Sci. 378 (2016) 408–417.

DOI: 10.1016/j.apsusc.2016.04.027

Google Scholar

[10] V.R. Saranam, B.K. Paul, Feasibility of using diffusion bonding for producing hybrid printed circuit heat exchangers for nuclear energy applications, Phys. Procedia 26 (2018) 560–569.

DOI: 10.1016/j.promfg.2018.07.066

Google Scholar

[11] G. Thirunavukarasu, S. Kundu, B. Mishra, S. Chatterjee, Effect of bonding temperature on interfacial reaction and mechanical properties of diffusion–bonded joint between Ti-6Al-4V and 304 stainless steel using nickel as an intermediate material, Metall. Mater. Trans. 45A (2014) 2067–(2077).

DOI: 10.1007/s11661-013-1940-3

Google Scholar

[12] Information on https://fusionforenergy.europa.eu/downloads/procurements/itercalls/461/Diffusion_Bonding_-_Feasibility_assessme_SSPT33_v1_9.pdf (date: 5th August 2019).

Google Scholar

[13] G.Çam, M. Koçak, Progress in joining of advanced materials, Int. Mater. Rev. 43 (1998) 1–44.

Google Scholar

[14] B. Alemán, L. Gutiérrez, J.J. Urcola, Interface microstructures in diffusion bonding of titanium alloys to stainless and low alloy steels, Mater. Sci. Technol. 9 (1993) 633–641.

DOI: 10.1179/mst.1993.9.8.633

Google Scholar

[15] S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang, X. Zhao, Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel, Mater. Des. 53 (2014) 504–511.

DOI: 10.1016/j.matdes.2013.07.044

Google Scholar

[16] T. Vigraman, D. Ravindran, R. Narayanasamy, Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti-6Al-4V and AISI 304L, Mater. Des. 36 (2012) 714–727.

DOI: 10.1016/j.matdes.2011.12.024

Google Scholar

[17] C. Velmurugan, V. Senthilkumar, S. Sarala, J. Arivarasan, Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel, J. Mater. Process. Technol. 234 (2016) 272–279.

DOI: 10.1016/j.jmatprotec.2016.03.013

Google Scholar

[18] M. Balasubramanian, Development of processing windows for diffusion bonding of Ti–6Al–4V titanium alloy and 304 stainless steel with silver as intermediate layer, T. Nonferr. Metal Soc. 25 (2015) 2932–2938.

DOI: 10.1016/s1003-6326(15)63919-x

Google Scholar

[19] M. Balasubramanian, Application of Box–Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding, Mater. Des. 77 (2015) 161–169.

DOI: 10.1016/j.matdes.2015.04.003

Google Scholar

[20] E. Norouzi, M. Atapour, M. Shamanian, A. Allafchian, Effect of bonding temperature on the microstructure and mechanical properties of Ti-6Al-4V to AISI 304 transient liquid phase bonded joint, Mater. Des. 99 (2016) 543–551.

DOI: 10.1016/j.matdes.2016.03.101

Google Scholar

[21] Alloy Phase Diagrams: ASM Handbook (vol. 3), ASM International, Materials Park, (1992).

Google Scholar

[22] A. Hasçalik, U. Çaydas, Electrical discharge machining of titanium alloy (Ti–6Al–4V), Appl. Surf. Sci. 253 (2007) 9007–9016.

DOI: 10.1016/j.apsusc.2007.05.031

Google Scholar

[23] Information on http://web.archive.org/web/20190314073913/http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a (date: 14th March 2019).

Google Scholar

[24] A. Kar, S.K. Choudhury, S. Suwas, S.V. Kailas, Effect of niobium interlayer in dissimilar friction stir welding of aluminum to titanium, Mater. Charact. 145 (2018) 402–412.

DOI: 10.1016/j.matchar.2018.09.007

Google Scholar

[25] J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda, F.M. Braz Fernandes, Laser joining of NiTi to Ti6Al4V using a niobium interlayer, Acta Mater. 105 (2016) 9–15.

DOI: 10.1016/j.actamat.2015.12.021

Google Scholar

[26] G.M. Xie, D.H. Yang, Z.A. Luo, M. Li, M.K. Wang, R.D.K. Misra, The determining role of Nb interlayer on interfacial microstructure and mechanical properties of Ti/steel clad plate by vacuum rolling cladding, Mater. 11 (2018) (1983).

DOI: 10.3390/ma11101983

Google Scholar

[27] Z. Luo, G. Wang, G. Xie, L. Wang, K. Zhao, Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer, Acta Metall. Sin. 26 (2013), 754–760.

DOI: 10.1007/s40195-013-0283-9

Google Scholar

[28] S. Kundu, S. Chatterjee, Effect of temperature on interface microstructure and strength properties of titanium–niobium–stainless-steel diffusion bonded joints, Mater. Sci. Technol. 27 (2011) 1177–1182.

DOI: 10.1179/026708309x12595712305870

Google Scholar

[29] G. Thirunavukarasu, V.V. Patel, S. Kundu, A. Alankar, Diffusion bonding of Ti6Al4V and SS 304 with Nb interlayer, Mater. Perform. Charact. 8 (2019) 1008–1031.

DOI: 10.1520/mpc20190041

Google Scholar

[30] G. Thirunavukarasu, S. Kundu, S. Chatterjee, Scope for improved properties of dissimilar joints of ferrous and non-ferrous metals, Trans. Nonferrous Met. Soc. China 27 (2017) 1517–1529.

DOI: 10.1016/s1003-6326(17)60172-9

Google Scholar

[31] Annual Book of ASTM E8M-11 Standard, vol. 03.01, ASTM, Philadelphia, PA, (2012).

Google Scholar

[32] G. Thirunavukarasu, S. Kundu, B. Mishra, S. Chatterjee, Effect of bonding time on interfacial reaction and mechanical properties of diffusion-bonded joint between Ti-6Al-4V and 304 stainless steel using nickel as an intermediate material, Metall. Mater. Trans. 45A (2014) 2078–(2090).

DOI: 10.1007/s11661-013-2135-7

Google Scholar

[33] G. Thirunavukarasu, S. Kundu, T. Laha, D. Roy, S. Chatterjee, Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper, Metall. Res. Technol. 115 (2018) 115.

DOI: 10.1051/metal/2017080

Google Scholar

[34] S. Kundu, S. Chatterjee, Evolution of interface microstructure and mechanical properties of titanium/304 stainless steel diffusion bonded joint using Nb interlayer, ISIJ Int. 50 (2010) 1460–1465.

DOI: 10.2355/isijinternational.50.1460

Google Scholar

[35] S. Sam, S. Kundu, S. Chatterjee, Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties, Mater. Des. 40 (2012) 237–244.

DOI: 10.1016/j.matdes.2012.02.058

Google Scholar

[36] P. He, J.C. Feng, B.G. Zhang, Y.Y. Qian, Microstructure and strength of diffusion-bonded joints of TiAl base alloy to steel, Mater. Charact. 48 (2002) 401–406.

DOI: 10.1016/s1044-5803(02)00319-4

Google Scholar

[37] G. Thirunavukarasu, S. Kundu, S. Chatterjee, Metallurgists' Insights on Diffusion-Assisted Dissimilar-Joints of Light- and Heavy-Alloys, Defect Diffus. Forum 380 (2017) 12–28.

DOI: 10.4028/www.scientific.net/ddf.380.12

Google Scholar

[38] S. Kundu, S. Chatterjee, Influence of bonding temperature on structure and strength properties of titanium and micro-duplex stainless steel diffusion bonded joints, ISIJ Int. 49 (2009), 1749–1754.

DOI: 10.2355/isijinternational.49.1749

Google Scholar

[39] ASTM B898-11, Standard Specification for Reactive and Refractory Metal Clad Plate. ASTM International, Philadelphia, PA, 1 September, (2011).

Google Scholar

[40] S. Simões, F. Viana, M. Koçak, A.S. Ramos, M.T. Vieira, M.F. Vieira, Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils, Mater. Chem. Phys. 128 (2011) 202–207.

DOI: 10.1016/j.matchemphys.2011.02.059

Google Scholar