Influence of Heat Treatment on Microhardness and Phase Transformations in Cast and Homogenized 7075(-Sc-Zr) Aluminium Alloys

Article Preview

Abstract:

The positive effect of Sc,Zr-addition on mechanical properties in Al-based alloys preferred for automotive manufacture to produce lightweight vehicles is generally known. Microstructure, mechanical, electrical and thermal properties of the conventionally cast and homogenized (475 °C/60 min) Al-5.4wt.%Zn-3.1wt.%Mg-1.5wt.%Cu (7075) and Al-5.2wt.%Zn-3.0wt.%Mg-1.4wt.%Cu-0.2wt.%Sc-0.1wt.%Zr (7075-ScZr) alloys during isochronal annealing were characterized. Precipitation reactions were studied by microhardness, electrical resistivity and conductivity measurements, differential scanning calorimetry and positron annihilation spectroscopy. Microstructure observation by scanning and transmission electron microscopy proved the Zn,Mg,Cu-containing eutectic phase at grain boundaries in the alloys. The melting of this eutectic phase was observed at ~ 481 °C for the both alloys. The distinct changes in microhardness and electrical resistivity isochronal curves as well as in heat flow of the alloys studied are mainly caused by dissolution of the clusters/Guinier-Preston (GP) zones and by formation of the metastable phase particles of the Al–Zn–Mg–Cu system. Clusters/GP zones were formed during the cooling and/or in the course of the storage at room temperature. These clusters/GP zones were formed predominantly by Mg and Zn alloying elements. Hardening effect after isochronal annealing at temperatures above ~ 300 °C reflects the Sc,Zr-addition in both states of the 7075-ScZr alloy. Probably precipitation of the T-phase (Al2Zn3Mg3) and S-phase (Al2CuMg) particles took place during the annealing. The Sc,Zr-addition does not significantly influence precipitation of the particles formed in the Al–Zn–Mg–Cu system.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 27)

Pages:

25-34

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. S. Toropova, D. G. Eskin, M. L. Kharakterova and T. V. Dobatkina, in: Advanced Aluminium Alloys Containing Scandium – Structure and Properties, Gordon and Breach Science Publisher, The Netherlands (1998).

DOI: 10.4324/9781315097541

Google Scholar

[2] M. Vlach, I. Stulíková, B. Smola, T. Kekule, H. Kudrnova, V. Kodetova, V. Ocenasek, J. Malek and V. Neubert: Kovové Materiály-Metallic Materials 53 (2015) 5, p.295.

DOI: 10.4028/www.scientific.net/ddf.354.93

Google Scholar

[3] N. Q. Vo, D. C. Dunand and D. N. Seidman: Mater. Sci. Eng. A 677 (2016), p.485.

Google Scholar

[4] Ch. Booth-Morrison, D. C. Dunand and D. N. Seidman: Acta Mater. 59 (2011), p.7029.

Google Scholar

[5] K. R. Prasanta, M. M. Ghosh and K. S. Ghosh: Mater. Characterization 104 (2015), p.49.

Google Scholar

[6] N. Afify, A. Gaber and G. Abbady: Mater. Sci. App. 2 (2011) 5, p.427.

Google Scholar

[7] K. S. Ghosh, N. Gao and M. J. Starink: Mater. Sci. Eng. A 552 (2012), p.164.

Google Scholar

[8] K. S. Ghosh and N. Gao: Trans. Non. Met. Soc. China 21 (2011) 6, p.1199.

Google Scholar

[9] C. Antonione, F. Marino and G. Riontino: Mater. Chem. Phys. 20 (1988), p.13.

Google Scholar

[10] S. Abis and G. Riontino: Mater. Lett. 5 (1987) 11–12, p.442.

Google Scholar

[11] M. Vlach, V. Kodetová, B. Smola, J. Čížek, T. Kekule, M. Cieslar, H. Kudrnova, L. Bajtošová, M. Leibner, I. Procházka: Kovové Materiály-Metallic Materials 56 (2018) 6, p.367.

DOI: 10.4149/km_2018_6_367

Google Scholar

[12] F. Bečvář, J. Čížek, I. Procházka, J. Janotová: Nucl. Inst. Methods Phys. Res. A 539 (2005), p.372.

Google Scholar

[13] J. Čížek, M. Vlček, I. Procházka: Nucl. Inst. Meth. in Phys. Research A 623 (2010), p.982.

Google Scholar

[14] M. Vlach, J. Čížek, O. Melikhova, I. Stulíková, B. Smola, T. Kekule, H. Kudrnová, R. Gemma, V. Neubert : Metall. Mater. Trans. A 46 (2015), p.1556.

Google Scholar

[15] V. Kodetova, M. Vlach, J. Cizek, M. Cieslar, L. Bajtosova, H. Kudrnova, M. Leibner: Acta Phys. Pol. (a) (2020), in press.

DOI: 10.1016/j.matdes.2020.108821

Google Scholar

[16] G. Dlubek, R. Krause, O. Brommer: J. Mater. Sci. 21 (1986), p.853.

Google Scholar

[17] T. M. Hall, A. N. Goland, C. L. Snead: Phys. Rev. B 10 (1974), p.3062.

Google Scholar

[18] M. Liu, J. Čížek, C. S. T. Chang, J. Banhart: Acta Mater. 91 (2015), p.355.

Google Scholar

[19] M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček,V. Kodetová, H. Kudrnová, P. Hruška: Mater. Characterization 129 (2017), p.1.

DOI: 10.1016/j.matchar.2017.04.017

Google Scholar

[20] M. J. Starink: Thermochim. Acta 404 (2003), p.163.

Google Scholar

[21] C. Antonione, F. Marino, G. Riontino, S. Abis, E. Russo: Mater. Chem. Phys. 20 (1988), p.13.

Google Scholar