Fundamental Core Effects in Transition Metal High-Entropy Alloys: “High-Entropy” and “Sluggish Diffusion” Effects

Article Preview

Abstract:

High entropy alloys (HEAs) are equimolar multi-principal-element alloys (MPEAs) that are different from traditional solvent-based multicomponent alloys based on the concept of alloy design. Based on initial work by Yeh and co-workers, HEAs were postulated to exhibit four “core” effects: high entropy, sluggish diffusion, lattice distortion, and cocktail effect. Out of these four proposed core effects, “high entropy” and “sluggish diffusion” effects were most debated in the literature as these core effects directly affect the thermodynamic and kinetic understanding of HEAs. The initial work on HEAs by several researchers utilized these effects to indirectly support the experimentally observed “unique” properties, without independent investigation of these core effects. The presumed implications of these core effects resulted in justification or generalization of properties to all HEAs, e.g., all HEAs should exhibit high temperature stability based on high entropy effect, high temperature strength owing to limited grain growth, good diffusion barrier application due to sluggish diffusion kinetics, etc. However, many recent studies have challenged these core effects, and suggested that not all HEAs were observed to exhibit these core effects.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 29)

Pages:

75-93

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] J.-W. Yeh, High-entropy multielement alloys, ed., Patent US 2002/0159914 A1, (2002).

Google Scholar

[4] D. Miracle, O. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[5] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science 85 (2003) 1404-1406.

Google Scholar

[6] E. Pickering, N. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews 61 (2016) 183-202.

DOI: 10.1080/09506608.2016.1180020

Google Scholar

[7] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61 (2013) 4887-4897.

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[8] S.V. Divinski, A.V. Pokoev, N. Esakkiraja, A. Paul, A mystery of sluggish diffusion" in high-entropy alloys: the truth or a myth,, Diffusion Foundations 17 (2018) 69-104.

DOI: 10.4028/www.scientific.net/df.17.69

Google Scholar

[9] M. Vaidya, K. Pradeep, B. Murty, G. Wilde, S. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, Scientific reports 7 (2017) 12293.

DOI: 10.1038/s41598-017-12551-9

Google Scholar

[10] M. Vaidya, K. Pradeep, B. Murty, G. Wilde, S. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia 146 (2018) 211-224.

DOI: 10.1016/j.actamat.2017.12.052

Google Scholar

[11] M. Vaidya, S. Trubel, B. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Journal of Alloys and Compounds 688 (2016) 994-1001.

DOI: 10.1016/j.jallcom.2016.07.239

Google Scholar

[12] A. Mehta, Y.H. Sohn, High Entropy and Sluggish Diffusion Core, Effects in Senary FCC Al–Co–Cr–Fe–Ni–Mn Alloys, ACS Combinatorial Science 22 (2020) 757−767.

DOI: 10.1021/acscombsci.0c00096

Google Scholar

[13] A. Mehta, Y.H. Sohn, Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy, Materials Research Letters 9 (2021) 239-246.

DOI: 10.1080/21663831.2021.1878475

Google Scholar

[14] A. Mehta, J. Dickson, R. Newell, D.D. Keiser, Y.H. Sohn, Interdiffusion and reaction between Al and Zr in the temperature range of 425 to 475 °C, Journal of Phase Equilibria and Diffusion 40 (2019) 482-494.

DOI: 10.1007/s11669-019-00729-9

Google Scholar

[15] A. Mehta, L. Zhou, D.D. Keiser Jr., Y.H. Sohn, Anomalous growth of Al8Mo3 phase during interdiffusion and reaction between Al and Mo, Journal of Nuclear Materials 539 (2020) 152337.

DOI: 10.1016/j.jnucmat.2020.152337

Google Scholar

[16] A. Mehta, L. Zhou, E.A. Schulz, D.D. Keiser Jr., J.I. Cole, Y.H. Sohn, Microstructural Characterization of AA6061 Versus AA6061 HIP Bonded Cladding–Cladding Interface, Journal of Phase Equilibria and Diffusion 39 (2018) 246-254.

DOI: 10.1007/s11669-018-0629-0

Google Scholar

[17] Y. Park, R. Newell, A. Mehta, D.D Keiser Jr., Y.H. Sohn, Interdiffusion and reaction between U and Zr, Journal of Nuclear Materials 502 (2018) 42-50.

DOI: 10.1016/j.jnucmat.2018.01.063

Google Scholar

[18] E. Schulz, A. Mehta, S.H. Park, Y.H. Sohn, Effects of Marker Size and Distribution on the Development of Kirkendall Voids, and Coefficients of Interdiffusion and Intrinsic Diffusion, Journal of Phase Equilibria and Diffusion 40 (2019) 156-169.

DOI: 10.1007/s11669-019-00710-6

Google Scholar

[19] L. Zhou, A. Mehta, K. Cho, Y.H. Sohn, Composition-dependent interdiffusion coefficient, reduced elastic modulus and hardness in γ-, γ'-and β-phases in the Ni-Al system, Journal of Alloys and Compounds 727 (2017) 153-162.

DOI: 10.1016/j.jallcom.2017.07.256

Google Scholar

[20] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, diffusion and the Kirkendall effect in solids, Springer, (2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[21] M.A. Dayananda, Y.H. Sohn, Average effective interdiffusion coefficients and their applications for isothermal multicomponent diffusion couples, Scripta materialia 35 (1996) 683-688.

DOI: 10.1016/1359-6462(96)00145-5

Google Scholar

[22] S. Divinski, O. Lukianova, G. Wilde, A. Dash, N. Esakkiraja, A. Paul, High-entropy alloys: Diffusion, Encyclopedia of Materials: Science and Technology, (2020).

DOI: 10.1016/b978-0-12-803581-8.11771-0

Google Scholar

[23] I.V. Belova, Y.H. Sohn, G.E. Murch, Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys, Philosophical Magazine Letters 95 (2015) 416-424.

DOI: 10.1080/09500839.2015.1082660

Google Scholar

[24] E.A. Schulz, A. Mehta, I.V. Belova, G.E. Murch, Y.H. Sohn, Simultaneous Measurement of Isotope-Free Tracer Diffusion Coefficients and Interdiffusion Coefficients in the Cu-Ni System, Journal of Phase Equilibria and Diffusion 39 (2018) 862-869.

DOI: 10.1007/s11669-018-0682-8

Google Scholar

[25] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44-51.

DOI: 10.1016/j.intermet.2012.03.005

Google Scholar

[26] J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia 62 (2014) 105-113.

DOI: 10.1016/j.actamat.2013.09.037

Google Scholar

[27] Y. Guo, L. Liu, Y. Zhang, J. Qi, B. Wang, Z. Zhao, J. Shang, J. Xiang, A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys, Journal of Materials Research 33 (2018) 3258-3265.

DOI: 10.1557/jmr.2018.177

Google Scholar

[28] C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A 36 (2005) 881-893.

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[29] X. Wang, Y. Zhang, Y. Qiao, G. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics 15 (2007) 357-362.

DOI: 10.1016/j.intermet.2006.08.005

Google Scholar

[30] J.M. Zhu, J.L. Meng, J.L. Liang, Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy, Rare Metals 35 (2016) 385-389.

DOI: 10.1007/s12598-014-0268-5

Google Scholar

[31] F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations, Calphad 45 (2014) 1-10.

DOI: 10.1016/j.calphad.2013.10.006

Google Scholar

[32] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia 61 (2013) 2628-2638.

DOI: 10.1016/j.actamat.2013.01.042

Google Scholar

[33] B. Ruiz-Yi, J.K. Bunn, D. Stasak, A. Mehta, M. Besser, M.J. Kramer, I. Takeuchi, J. Hattrick-Simpers, The Different Roles of Entropy and Solubility in High Entropy Alloy Stability, ACS combinatorial science 18 (2016) 596-603.

DOI: 10.1021/acscombsci.6b00077

Google Scholar

[34] A. Mehta, Fundamental Core Effects in Co-Cr-Fe-Ni Based High Entropy Alloys, Electronic Theses and Dissertations 6333 (2019) doi: https://stars.library.ucf.edu/etd/6333.

Google Scholar

[35] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Journal of Alloys and Compounds 488 (2009) 57-64.

DOI: 10.1016/j.jallcom.2009.08.090

Google Scholar

[36] A. Mehta, Y.H. Sohn, Interdiffusion, Solubility Limit, and Role of Entropy in FCC Al-Co-Cr-Fe-Ni Alloys, Metallurgical and Materials Transactions A 51 (2020) 3142–3153.

DOI: 10.1007/s11661-020-05742-z

Google Scholar

[37] Q. He, Y. Ye, Y. Yang, The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys, Journal of Applied Physics 120 (2016) 154902.

DOI: 10.1063/1.4965701

Google Scholar

[38] Q. He, Y. Ye, Y. Yang, Formation of Random Solid Solution in Multicomponent Alloys: from Hume-Rothery Rules to Entropic Stabilization, Journal of Phase Equilibria and Diffusion 38 (2017) 416-425.

DOI: 10.1007/s11669-017-0560-9

Google Scholar

[39] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions 46 (2005) 2817-2829.

DOI: 10.2320/matertrans.46.2817

Google Scholar

[40] H. Bakker, Enthalpies in alloys, Miedema's semi-empirical model, Enfield Publishing & Distribution Company, (1998).

Google Scholar

[41] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy, Intermetallics 31 (2012) 165-172.

DOI: 10.1016/j.intermet.2012.07.001

Google Scholar

[42] H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, C.C. Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surface and Coatings Technology 202 (2008) 3360-3366.

DOI: 10.1016/j.surfcoat.2007.12.014

Google Scholar

[43] J.-W. Yeh, Physical metallurgy of high-entropy alloys, JOM 67 (2015) 2254-2261.

DOI: 10.1007/s11837-015-1583-5

Google Scholar

[44] A. Paul, Comments on Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887–4897, Scripta Materialia 135 (2017) 153-157.

DOI: 10.1016/j.scriptamat.2017.03.026

Google Scholar

[45] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Reply to comments on Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887-4897, Scripta Materialia 135 (2017) 158-159.

DOI: 10.1016/j.scriptamat.2017.03.028

Google Scholar

[46] D. Gaertner, K. Abrahams, J. Kottke, V.A. Esin, I. Steinbach, G. Wilde, S.V. Divinski, Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys, Acta Materialia 166 (2019) 357-370.

DOI: 10.1016/j.actamat.2018.12.033

Google Scholar

[47] D. Gaertner, J. Kottke, G. Wilde, S.V. Divinski, Y. Chumlyakov, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys, Journal of Materials Research 33 (2018) 3184-3191.

DOI: 10.1557/jmr.2018.162

Google Scholar

[48] C. Zhang, F. Zhang, K. Jin, H. Bei, S. Chen, W. Cao, J. Zhu, D. Lv, Understanding of the elemental diffusion behavior in concentrated solid solution alloys, Journal of Phase Equilibria and Diffusion 38 (2017) 434-444.

DOI: 10.1007/s11669-017-0580-5

Google Scholar

[49] J. Kottke, M. Laurent-Brocq, A. Fareed, D. Gaertner, L. Perrière, Ł. Rogal, S.V. Divinski, G. Wilde, Tracer diffusion in the Ni–CoCrFeMn system: Transition from a dilute solid solution to a high entropy alloy, Scripta Materialia 159 (2019) 94-98.

DOI: 10.1016/j.scriptamat.2018.09.011

Google Scholar

[50] W. Kucza, J. Dąbrowa, G. Cieślak, K. Berent, T. Kulik, M. Danielewski, Studies of sluggish diffusion, effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach, Journal of Alloys and Compounds 731 (2018) 920-928.

DOI: 10.1016/j.jallcom.2017.10.108

Google Scholar

[51] J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, J.-W. Yeh, Interdiffusion in the fcc-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations, Journal of Alloys and Compounds 674 (2016) 455-462.

DOI: 10.1016/j.jallcom.2016.03.046

Google Scholar

[52] J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, M. Danielewski, Demystifying the sluggish diffusion effect in high entropy alloys, Journal of Alloys and Compounds 783 (2019) 193-207.

DOI: 10.1016/j.jallcom.2018.12.300

Google Scholar

[53] K. Jin, C. Zhang, F. Zhang, H. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys, Materials Research Letters 6 (2018) 293-299.

DOI: 10.1080/21663831.2018.1446466

Google Scholar

[54] Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z.-K. Liu, On sluggish diffusion in fcc Al–Co–Cr–Fe–Ni high-entropy alloys: an experimental and numerical study, Metals 8 (2018) 16.

DOI: 10.3390/met8010016

Google Scholar

[55] J. Dąbrowa, M. Danielewski, State-of-the-Art Diffusion Studies in the High Entropy Alloys, Metals 10 (2020) 347.

DOI: 10.3390/met10030347

Google Scholar

[56] M. Bronfin, G. Bulatov, I. Drugova, Self-diffusion of Ni in the intermetallic compound Ni3Al and pure Ni, Fiz. Met. Metalloved. 40 (1975) 363-366.

Google Scholar

[57] B. Million, J. Růžičková, J. Velíšek, J. Vřešťál, Diffusion processes in the Fe-Ni system, Materials Science and Engineering 50 (1981) 43-52.

DOI: 10.1016/0025-5416(81)90084-7

Google Scholar

[58] S. Rothman, L. Nowicki, G. Murch, Self-diffusion in austenitic Fe-Cr-Ni alloys, Journal of Physics F: Metal Physics 10 (1980) 383.

DOI: 10.1088/0305-4608/10/3/009

Google Scholar

[59] S. Zhao, T. Egami, G.M. Stocks, Y. Zhang, Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys, Physical Review Materials 2 (2018) 013602.

DOI: 10.1103/physrevmaterials.2.013602

Google Scholar