Kinetics and Thermodynamics of Fe-X (X= Al, Cr, Mn, Ti, B, and C) Melts under High Pressure

Article Preview

Abstract:

The kinetic properties such as diffusivity and viscosity of the metal melt are the foundations to reveal the structure evolutions and the glass formation abilities during solidification of the investigated alloy, thus, to control the microstructures, defects and properties of materials. In this work, ab initio molecular dynamics simulations were utilized to investigate the kinetic and thermodynamic properties and the structural relaxations of Fe-X (X = 10-15 wt% Al, Cr, Mn and Ti, or 1-2wt% B and C) melts under various temperature and external pressure, which are in line with the interested concentration range of multi-component Fe-based alloys. The kinetics and structural relaxations are characterized by mean squared displacement, velocity autocorrelation function and self-intermediate scattering function. The thermodynamics properties including entropy and heat capacity are calculated by combining the vibrational and electronic contributions based on vibrational and electronic density of states. The predicted kinetics and thermodynamics properties under high temperature and pressure agree well with the experimental and theoretical results while the connection among structural relaxations and diffusion are revealed based on the Stokes-Einstein relation and the Hall-Wolynes (HW) relation. This work provides an insight into the structure-property relationships of metal melts, which are essential in the development of advanced multi-component Fe-based alloys.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 29)

Pages:

143-160

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hou TP, Li Y, Wu KM, Peet MJ, Hulme-Smith CN, Guo L. Magnetic-field-induced magnetism and thermal stability of carbides Fe6-xMoxC in molybdenum-containing steels. Acta Mater. 102 (2016) 24-31.

DOI: 10.1016/j.actamat.2015.09.029

Google Scholar

[2] Kietzmann A, Redmer R, Desjarlais MP, Mattsson TR. Complex behavior of fluid lithium under extreme conditions. Phys. Rev. Lett. 101 (2008) 070401.

DOI: 10.1103/physrevlett.101.070401

Google Scholar

[3] Zhang Y, Tan Y, Geng HY, Salke NP, Gao Z, Li J, Sekine T, Wang Q, Greenberg E, Prakapenka VB, Lin J-F. Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory. Phys. Rev. B. 102 (2020) 214104.

DOI: 10.1103/physrevb.102.214104

Google Scholar

[4] Zou PF, Zheng CH, Hu L, Wang HP. Rapid growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition. J. Mater. Sci. Technol. 77 (2021) 82-89.

DOI: 10.1016/j.jmst.2020.10.064

Google Scholar

[5] Zou PF, Wang HP, Zheng CH, Hu L, Chang J, Wei B. Electrostatic levitation processing and microscopic hardness property of hyperperitectic Ti60Ni40 alloy. Intermetallics 130 (2021) 106934.

DOI: 10.1016/j.intermet.2020.106934

Google Scholar

[6] Levchenko EV, Ahmed T, Evteev AV. Composition dependence of diffusion and thermotransport in Ni-Al melts: A step towards molecular dynamics assisted databases. Acta Mater. 136 (2017) 74-89.

DOI: 10.1016/j.actamat.2017.06.056

Google Scholar

[7] Liu Y, Wang J, Du Y, Zhang L, Liang D. Mobilities and diffusivities in fcc Fe–X (Ag, Au, Cu, Pd and Pt) alloys. Calphad 34 (2010) 253-262.

DOI: 10.1016/j.calphad.2010.04.002

Google Scholar

[8] Muralikrishna GM, Tas B, Esakkiraja N, Esin VA, Kumar KCH, Golovin IS, Belova IV, Murch GE, Paul A, Divinski SV. Composition dependence of tracer diffusion coefficients in Fe–Ga alloys: A case study by a tracer-diffusion couple method. Acta Mater. 203 (2021) 116446.

DOI: 10.1016/j.actamat.2020.10.065

Google Scholar

[9] Li CJ, He SY, Fan YF, Engelhardt H, Jia SH, Xuan WD, Li X, Zhong YB, Ren ZM. Enhanced diffusivity in Ni-Al system by alternating magnetic field. Appl. Phys. Lett. 110 (2017) 074102.

DOI: 10.1063/1.4976528

Google Scholar

[10] Tang J, Xue XY, Wang WY, Lin DY, Ahmed T, Wang J, Tang B, Shang SL, Belova IV, Song HF, Murch GE, Li JS, Liu ZK. Activation volume dominated diffusivity of Ni50Al50 melt under extreme conditions. Comp. Mater. Sci. 171 (2020) 109263.

DOI: 10.1016/j.commatsci.2019.109263

Google Scholar

[11] Parmar ADS, Sengupta S, Sastry S. length-scale dependence of the Stokes-Einstein and Adam-Gibbs relations in model glass formers. Phys. Rev. Lett. 119 (2017) 056001.

DOI: 10.1103/physrevlett.119.056001

Google Scholar

[12] Xu L, Mallamace F, Yan Z, Starr F, Buldyrev S, Stanley H. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 5 (2009) 565-569.

DOI: 10.1038/nphys1328

Google Scholar

[13] Wang L, Xu N, Wang WH, Guan P. Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids. Phys. Rev. Lett. 120 (2018) 125502.

DOI: 10.1103/physrevlett.120.125502

Google Scholar

[14] Pasturel A, Jakse N. Atomic-scale structural signature of dynamic heterogeneities in metallic liquids. NPJ Comput. Mater. 3 (2017) 33.

DOI: 10.1038/s41524-017-0034-y

Google Scholar

[15] Zhang P, Maldonis J, Liu z, Schroers J, Voyles P. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun 9 (2018) 1129.

DOI: 10.1038/s41467-018-03604-2

Google Scholar

[16] Adam G, Gibbs JH. On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43 (1965) 139-146.

DOI: 10.1063/1.1696442

Google Scholar

[17] Wang Z, Sun BA, Bai HY, Wang WH. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun 5 (2014) 5823.

DOI: 10.1038/ncomms6823

Google Scholar

[18] Yu H-B, Wang W-H, Samwer K. The β relaxation in metallic glasses: an overview. Mater. Today 16 (2013) 183-191.

DOI: 10.1016/j.mattod.2013.05.002

Google Scholar

[19] Yu HB, Samwer K, Wu Y, Wang WH. Correlation between β Relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Phys. Rev. Lett. 109 (2012) 095508.

DOI: 10.1103/physrevlett.109.095508

Google Scholar

[20] Floudas G, Paluch M, Grzybowski A, Ngai K. Molecular dynamics of glass-forming systems. Berlin: Springer-Verlag, (2011).

DOI: 10.1007/978-3-642-04902-6

Google Scholar

[21] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[22] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[23] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[24] Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[25] Wang Y, Chen LQ, Liu ZK, Mathaudhu SN. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Mater. 62 (2010) 646-649.

DOI: 10.1016/j.scriptamat.2010.01.014

Google Scholar

[26] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[27] Rudyak VY, Belkin AA, Ivanov DA, Egorov VV. The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient. High. Temp. 46 (2008) 30-39.

DOI: 10.1134/s10740-008-1006-1

Google Scholar

[28] Kondratyuk ND, Norman GE, Stegailov VV. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes. J. Chem. Phys. 145 (2016) 204504.

DOI: 10.1063/1.4967873

Google Scholar

[29] Lin ST, Blanco M, Goddard WA. The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids. J. Chem. Phys. 119 (2003) 11792-11805.

DOI: 10.1063/1.1624057

Google Scholar

[30] Han JJ, Wang WY, Wang CP, Wang Y, Liu XJ, Liu ZK. Accurate determination of thermodynamic properties for liquid alloys based on ab initio molecular dynamics simulation. Fluid Phase Equilib. 360 (2013) 44-53.

DOI: 10.1016/j.fluid.2013.09.006

Google Scholar

[31] Wang Y, Liu ZK, Chen LQ. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52 (2004) 2665-2671.

DOI: 10.1016/j.actamat.2004.02.014

Google Scholar

[32] Wang Y, Chen D, Zhang X. Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 84 (2000) 3220-3223.

DOI: 10.1103/physrevlett.84.3220

Google Scholar

[33] Wang WY, Han JJ, Fang HZ, Wang J, Liang YF, Shang SL, Wang Y, Liu XJ, Kecskes LJ, Mathaudhu SN, Hui X, Liu ZK. Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Mater. 97 (2015) 75-85.

DOI: 10.1016/j.actamat.2015.07.001

Google Scholar

[34] Wang WY, Shang SL, Fang HZ, Zhang H, Wang Y, Mathaudhu S, Hui X, Liu ZK. Effect of composition on atomic structure, diffusivity and viscosity of liquid Al-Zr alloys. Metall Mater Trans A 43 (2012) 3471-3480.

DOI: 10.1007/s11661-011-1054-8

Google Scholar

[35] He X, Zhu Y, Epstein A, Mo Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4 (2018) 18.

DOI: 10.1038/s41524-018-0074-y

Google Scholar

[36] Horbach J, Das SK, Griesche A, Macht MP, Frohberg G, Meyer A. Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment. Phys. Rev. B 75 (2007) 174304.

DOI: 10.1103/physrevb.75.174304

Google Scholar

[37] Shiba H, Yamada Y, Kawasaki T, Kim K. Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation. Phys. Rev. Lett. 117 (2016).

DOI: 10.1103/physrevlett.117.245701

Google Scholar

[38] Wang WY, Shang SL, Wang Y, Fang HZ, Mathaudhu S, Hui XD, Liu Z-K. Impact of W on structural evolution and diffusivity of Ni-W melts: an ab initio molecular dynamics study. J. Mater. Sci 50 (2015) 1071-1081.

DOI: 10.1007/s10853-014-8664-7

Google Scholar

[39] Eggersmann M, Mehrer H. Diffusion in intermetallic phases of the Fe-Al system. Philos. Mag. A 80 (2000) 1219-1244.

DOI: 10.1080/01418610008212112

Google Scholar

[40] Li XL, Wu P, Yang RJ, Yan D, Chen S, Zhang SP, Chen N. Boron diffusion in bcc-Fe studied by first-principles calculations. Chin. Phys. B 25 (2016) 7.

DOI: 10.1088/1674-1056/25/3/036601

Google Scholar

[41] Wolfe RA, Paxton HW. Diffusion in bcc metals. Trans. Metall. Soc. Aime. 230 (1964) 1426.

Google Scholar

[42] Ågren J. A revised expression for the diffusivity of carbon in binary FeC austenite. Scripta. Metall. 20 (1986) 1507-1510.

DOI: 10.1016/0036-9748(86)90384-4

Google Scholar

[43] Liu Y, Zhang L, Du Y, Yu D, Liang D. Atomic mobilities, uphill diffusion and proeutectic ferrite growth in Fe-Mn-C alloys. Calphad 33 (2009) 614-623.

DOI: 10.1016/j.calphad.2009.07.002

Google Scholar

[44] Pandelaers L, Blanpain B, Wollants P. An optimized diffusion database for the disordered and ordered bcc phases in the binary Fe-Ti system. Calphad 35 (2011) 518-522.

DOI: 10.1016/j.calphad.2011.09.001

Google Scholar

[45] Faupel F, Frank W, Macht M-P, Mehrer H, Naundorf V, Rätzke K, Schober HR, Sharma SK, Teichler H. Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75 (2003) 237-280.

DOI: 10.1103/revmodphys.75.237

Google Scholar

[46] Berthier L, Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83 (2011) 587-645.

DOI: 10.1103/revmodphys.83.587

Google Scholar

[47] Fang HZ, Wang WY, Jablonski PD, Liu ZK. Effects of reactive elements on the structure and diffusivity of liquid chromia: An ab initio molecular dynamics study. Phys. Rev. B 85 (2012) 014207.

DOI: 10.1103/physrevb.85.014207

Google Scholar

[48] Alfè D, Gillan MJ. First-principles calculation of transport coefficients. Phys. Rev. Lett. 81 (1998) 5161-5164.

DOI: 10.1103/physrevlett.81.5161

Google Scholar

[49] Ray SP, Sharma BD. Diffusion of Fe59 in Fe-Cr alloys. Acta Metall. 16 (1968) 981-986.

DOI: 10.1016/0001-6160(68)90085-0

Google Scholar

[50] Saunders N. COST 507 – Thermophysical database for light metal alloys. (1998).

Google Scholar

[51] Chernatynskiy A, Phillpot SR. Phonon transport simulator (PhonTS). Comp. Phys. Comm. 192 (2015) 196-204.

DOI: 10.1016/j.cpc.2015.01.008

Google Scholar

[52] Sundman B, Ohnuma I, Dupin N, Kattner UR, Fries SG. An assessment of the entire Al–Fe system including D03 ordering. Acta Mater. 57 (2009) 2896-2908.

DOI: 10.1016/j.actamat.2009.02.046

Google Scholar

[53] Wang WY, Fang HZ, Shang SL, Zhang H, Wang Y, Hui X, Mathaudhu S, Liu ZK. Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Physica B Condensed Matter 406 (2011) 3089-3097.

DOI: 10.1016/j.physb.2011.05.013

Google Scholar

[54] Larini L, Ottochian A, De Michele C, Leporini D. Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers. Nat. Phys. 4 (2007) 42-45.

DOI: 10.1038/nphys788

Google Scholar

[55] Karmakar S, Dasgupta C, Sastry S. Short-time beta relaxation in glass-forming liquids iscooperative in nature. Phys. Rev. Lett. 116 (2016) 085701.

DOI: 10.1103/physrevlett.116.085701

Google Scholar

[56] Fragiadakis D, Roland CM. Dynamic correlations and heterogeneity in the primary and secondary relaxations of a model molecular liquid. Phys. Rev. E 89 (2014) 052304.

DOI: 10.1103/physreve.89.052304

Google Scholar