[1]
Hou TP, Li Y, Wu KM, Peet MJ, Hulme-Smith CN, Guo L. Magnetic-field-induced magnetism and thermal stability of carbides Fe6-xMoxC in molybdenum-containing steels. Acta Mater. 102 (2016) 24-31.
DOI: 10.1016/j.actamat.2015.09.029
Google Scholar
[2]
Kietzmann A, Redmer R, Desjarlais MP, Mattsson TR. Complex behavior of fluid lithium under extreme conditions. Phys. Rev. Lett. 101 (2008) 070401.
DOI: 10.1103/physrevlett.101.070401
Google Scholar
[3]
Zhang Y, Tan Y, Geng HY, Salke NP, Gao Z, Li J, Sekine T, Wang Q, Greenberg E, Prakapenka VB, Lin J-F. Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory. Phys. Rev. B. 102 (2020) 214104.
DOI: 10.1103/physrevb.102.214104
Google Scholar
[4]
Zou PF, Zheng CH, Hu L, Wang HP. Rapid growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition. J. Mater. Sci. Technol. 77 (2021) 82-89.
DOI: 10.1016/j.jmst.2020.10.064
Google Scholar
[5]
Zou PF, Wang HP, Zheng CH, Hu L, Chang J, Wei B. Electrostatic levitation processing and microscopic hardness property of hyperperitectic Ti60Ni40 alloy. Intermetallics 130 (2021) 106934.
DOI: 10.1016/j.intermet.2020.106934
Google Scholar
[6]
Levchenko EV, Ahmed T, Evteev AV. Composition dependence of diffusion and thermotransport in Ni-Al melts: A step towards molecular dynamics assisted databases. Acta Mater. 136 (2017) 74-89.
DOI: 10.1016/j.actamat.2017.06.056
Google Scholar
[7]
Liu Y, Wang J, Du Y, Zhang L, Liang D. Mobilities and diffusivities in fcc Fe–X (Ag, Au, Cu, Pd and Pt) alloys. Calphad 34 (2010) 253-262.
DOI: 10.1016/j.calphad.2010.04.002
Google Scholar
[8]
Muralikrishna GM, Tas B, Esakkiraja N, Esin VA, Kumar KCH, Golovin IS, Belova IV, Murch GE, Paul A, Divinski SV. Composition dependence of tracer diffusion coefficients in Fe–Ga alloys: A case study by a tracer-diffusion couple method. Acta Mater. 203 (2021) 116446.
DOI: 10.1016/j.actamat.2020.10.065
Google Scholar
[9]
Li CJ, He SY, Fan YF, Engelhardt H, Jia SH, Xuan WD, Li X, Zhong YB, Ren ZM. Enhanced diffusivity in Ni-Al system by alternating magnetic field. Appl. Phys. Lett. 110 (2017) 074102.
DOI: 10.1063/1.4976528
Google Scholar
[10]
Tang J, Xue XY, Wang WY, Lin DY, Ahmed T, Wang J, Tang B, Shang SL, Belova IV, Song HF, Murch GE, Li JS, Liu ZK. Activation volume dominated diffusivity of Ni50Al50 melt under extreme conditions. Comp. Mater. Sci. 171 (2020) 109263.
DOI: 10.1016/j.commatsci.2019.109263
Google Scholar
[11]
Parmar ADS, Sengupta S, Sastry S. length-scale dependence of the Stokes-Einstein and Adam-Gibbs relations in model glass formers. Phys. Rev. Lett. 119 (2017) 056001.
DOI: 10.1103/physrevlett.119.056001
Google Scholar
[12]
Xu L, Mallamace F, Yan Z, Starr F, Buldyrev S, Stanley H. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 5 (2009) 565-569.
DOI: 10.1038/nphys1328
Google Scholar
[13]
Wang L, Xu N, Wang WH, Guan P. Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids. Phys. Rev. Lett. 120 (2018) 125502.
DOI: 10.1103/physrevlett.120.125502
Google Scholar
[14]
Pasturel A, Jakse N. Atomic-scale structural signature of dynamic heterogeneities in metallic liquids. NPJ Comput. Mater. 3 (2017) 33.
DOI: 10.1038/s41524-017-0034-y
Google Scholar
[15]
Zhang P, Maldonis J, Liu z, Schroers J, Voyles P. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun 9 (2018) 1129.
DOI: 10.1038/s41467-018-03604-2
Google Scholar
[16]
Adam G, Gibbs JH. On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43 (1965) 139-146.
DOI: 10.1063/1.1696442
Google Scholar
[17]
Wang Z, Sun BA, Bai HY, Wang WH. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun 5 (2014) 5823.
DOI: 10.1038/ncomms6823
Google Scholar
[18]
Yu H-B, Wang W-H, Samwer K. The β relaxation in metallic glasses: an overview. Mater. Today 16 (2013) 183-191.
DOI: 10.1016/j.mattod.2013.05.002
Google Scholar
[19]
Yu HB, Samwer K, Wu Y, Wang WH. Correlation between β Relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Phys. Rev. Lett. 109 (2012) 095508.
DOI: 10.1103/physrevlett.109.095508
Google Scholar
[20]
Floudas G, Paluch M, Grzybowski A, Ngai K. Molecular dynamics of glass-forming systems. Berlin: Springer-Verlag, (2011).
DOI: 10.1007/978-3-642-04902-6
Google Scholar
[21]
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[22]
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6 (1996) 15-50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[23]
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[24]
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 50 (1994) 17953-17979.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[25]
Wang Y, Chen LQ, Liu ZK, Mathaudhu SN. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Mater. 62 (2010) 646-649.
DOI: 10.1016/j.scriptamat.2010.01.014
Google Scholar
[26]
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B. 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[27]
Rudyak VY, Belkin AA, Ivanov DA, Egorov VV. The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient. High. Temp. 46 (2008) 30-39.
DOI: 10.1134/s10740-008-1006-1
Google Scholar
[28]
Kondratyuk ND, Norman GE, Stegailov VV. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes. J. Chem. Phys. 145 (2016) 204504.
DOI: 10.1063/1.4967873
Google Scholar
[29]
Lin ST, Blanco M, Goddard WA. The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids. J. Chem. Phys. 119 (2003) 11792-11805.
DOI: 10.1063/1.1624057
Google Scholar
[30]
Han JJ, Wang WY, Wang CP, Wang Y, Liu XJ, Liu ZK. Accurate determination of thermodynamic properties for liquid alloys based on ab initio molecular dynamics simulation. Fluid Phase Equilib. 360 (2013) 44-53.
DOI: 10.1016/j.fluid.2013.09.006
Google Scholar
[31]
Wang Y, Liu ZK, Chen LQ. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52 (2004) 2665-2671.
DOI: 10.1016/j.actamat.2004.02.014
Google Scholar
[32]
Wang Y, Chen D, Zhang X. Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 84 (2000) 3220-3223.
DOI: 10.1103/physrevlett.84.3220
Google Scholar
[33]
Wang WY, Han JJ, Fang HZ, Wang J, Liang YF, Shang SL, Wang Y, Liu XJ, Kecskes LJ, Mathaudhu SN, Hui X, Liu ZK. Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Mater. 97 (2015) 75-85.
DOI: 10.1016/j.actamat.2015.07.001
Google Scholar
[34]
Wang WY, Shang SL, Fang HZ, Zhang H, Wang Y, Mathaudhu S, Hui X, Liu ZK. Effect of composition on atomic structure, diffusivity and viscosity of liquid Al-Zr alloys. Metall Mater Trans A 43 (2012) 3471-3480.
DOI: 10.1007/s11661-011-1054-8
Google Scholar
[35]
He X, Zhu Y, Epstein A, Mo Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4 (2018) 18.
DOI: 10.1038/s41524-018-0074-y
Google Scholar
[36]
Horbach J, Das SK, Griesche A, Macht MP, Frohberg G, Meyer A. Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment. Phys. Rev. B 75 (2007) 174304.
DOI: 10.1103/physrevb.75.174304
Google Scholar
[37]
Shiba H, Yamada Y, Kawasaki T, Kim K. Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation. Phys. Rev. Lett. 117 (2016).
DOI: 10.1103/physrevlett.117.245701
Google Scholar
[38]
Wang WY, Shang SL, Wang Y, Fang HZ, Mathaudhu S, Hui XD, Liu Z-K. Impact of W on structural evolution and diffusivity of Ni-W melts: an ab initio molecular dynamics study. J. Mater. Sci 50 (2015) 1071-1081.
DOI: 10.1007/s10853-014-8664-7
Google Scholar
[39]
Eggersmann M, Mehrer H. Diffusion in intermetallic phases of the Fe-Al system. Philos. Mag. A 80 (2000) 1219-1244.
DOI: 10.1080/01418610008212112
Google Scholar
[40]
Li XL, Wu P, Yang RJ, Yan D, Chen S, Zhang SP, Chen N. Boron diffusion in bcc-Fe studied by first-principles calculations. Chin. Phys. B 25 (2016) 7.
DOI: 10.1088/1674-1056/25/3/036601
Google Scholar
[41]
Wolfe RA, Paxton HW. Diffusion in bcc metals. Trans. Metall. Soc. Aime. 230 (1964) 1426.
Google Scholar
[42]
Ågren J. A revised expression for the diffusivity of carbon in binary FeC austenite. Scripta. Metall. 20 (1986) 1507-1510.
DOI: 10.1016/0036-9748(86)90384-4
Google Scholar
[43]
Liu Y, Zhang L, Du Y, Yu D, Liang D. Atomic mobilities, uphill diffusion and proeutectic ferrite growth in Fe-Mn-C alloys. Calphad 33 (2009) 614-623.
DOI: 10.1016/j.calphad.2009.07.002
Google Scholar
[44]
Pandelaers L, Blanpain B, Wollants P. An optimized diffusion database for the disordered and ordered bcc phases in the binary Fe-Ti system. Calphad 35 (2011) 518-522.
DOI: 10.1016/j.calphad.2011.09.001
Google Scholar
[45]
Faupel F, Frank W, Macht M-P, Mehrer H, Naundorf V, Rätzke K, Schober HR, Sharma SK, Teichler H. Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75 (2003) 237-280.
DOI: 10.1103/revmodphys.75.237
Google Scholar
[46]
Berthier L, Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83 (2011) 587-645.
DOI: 10.1103/revmodphys.83.587
Google Scholar
[47]
Fang HZ, Wang WY, Jablonski PD, Liu ZK. Effects of reactive elements on the structure and diffusivity of liquid chromia: An ab initio molecular dynamics study. Phys. Rev. B 85 (2012) 014207.
DOI: 10.1103/physrevb.85.014207
Google Scholar
[48]
Alfè D, Gillan MJ. First-principles calculation of transport coefficients. Phys. Rev. Lett. 81 (1998) 5161-5164.
DOI: 10.1103/physrevlett.81.5161
Google Scholar
[49]
Ray SP, Sharma BD. Diffusion of Fe59 in Fe-Cr alloys. Acta Metall. 16 (1968) 981-986.
DOI: 10.1016/0001-6160(68)90085-0
Google Scholar
[50]
Saunders N. COST 507 – Thermophysical database for light metal alloys. (1998).
Google Scholar
[51]
Chernatynskiy A, Phillpot SR. Phonon transport simulator (PhonTS). Comp. Phys. Comm. 192 (2015) 196-204.
DOI: 10.1016/j.cpc.2015.01.008
Google Scholar
[52]
Sundman B, Ohnuma I, Dupin N, Kattner UR, Fries SG. An assessment of the entire Al–Fe system including D03 ordering. Acta Mater. 57 (2009) 2896-2908.
DOI: 10.1016/j.actamat.2009.02.046
Google Scholar
[53]
Wang WY, Fang HZ, Shang SL, Zhang H, Wang Y, Hui X, Mathaudhu S, Liu ZK. Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Physica B Condensed Matter 406 (2011) 3089-3097.
DOI: 10.1016/j.physb.2011.05.013
Google Scholar
[54]
Larini L, Ottochian A, De Michele C, Leporini D. Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers. Nat. Phys. 4 (2007) 42-45.
DOI: 10.1038/nphys788
Google Scholar
[55]
Karmakar S, Dasgupta C, Sastry S. Short-time beta relaxation in glass-forming liquids iscooperative in nature. Phys. Rev. Lett. 116 (2016) 085701.
DOI: 10.1103/physrevlett.116.085701
Google Scholar
[56]
Fragiadakis D, Roland CM. Dynamic correlations and heterogeneity in the primary and secondary relaxations of a model molecular liquid. Phys. Rev. E 89 (2014) 052304.
DOI: 10.1103/physreve.89.052304
Google Scholar