[1]
H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag Berlin Heidelberg, (2007).
Google Scholar
[2]
A.D. Smigelskas, E.O. Kirkendall, Zinc Diffusion in Alpha Brass, Trans. AIME 171 (1947) 130-142.
Google Scholar
[3]
H.-E. Schaefer, K. Frenner, R. Würschum, Time-Differential Length Change Measurements for Thermal Defect Investigations: Intermetallic B2-FeAl and B2-NiAl Compounds, a Case Study, Phys. Rev. Letters, 82 (1999) 948-951.
DOI: 10.1103/physrevlett.82.948
Google Scholar
[4]
P. Sowa, Atomistic simulation of mass transport phenomena in inhomogeneous intermetallic systems, PhD Thesis, Jagiellonian University in Krakow, 2017, https://fais.uj.edu.pl/ documents/41628/137691040/main-JVr9VLic.pdf/9c8903e9-6bc7-43b9-87d3-855f5816ccee.
Google Scholar
[5]
R. Kozubski, M.C. Cadeville, In situ resistometric investigation of ordering kinetics in Ni3Al, J.Phys.F. : Met. Phys. 18 (1988) 2569-2575.
DOI: 10.1088/0305-4608/18/12/008
Google Scholar
[6]
R. Kozubski, W. Pfeiler, Kinetics of defect recovery and long-range ordering in Ni3Al+B. II. Atomic jump processes studied by order-order, relaxation experiments, Acta Mater. 44 (1996) 1573-1579.
DOI: 10.1016/1359-6454(95)00275-8
Google Scholar
[7]
P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W.Pfeiler, Monte Carlo computer simulation of order-order, kinetics in L12 - ordered Ni3Al binary system, Phys.Rev.B 63 (2001)174109/1-14.
DOI: 10.1557/proc-646-n5.10.1
Google Scholar
[8]
M. Nikiel, R. Kozubski, Order-order, kinetics in Ni50.5Al49.5 single crystal by quasi-residual resistometry, Intermetallics 25 (2012) 5-8.
DOI: 10.1016/j.intermet.2012.02.002
Google Scholar
[9]
M. Kozłowski, R. Kozubski, Ch. Goyhenex, V. Pierron-Bohnes, M. Rennhofer, S. Malinov, Atomic ordering in nano-layered FePt, Intermetallics 17 (2009) 907-913.
DOI: 10.1016/j.intermet.2009.03.019
Google Scholar
[10]
S. Brodacka, M. Kozlowski, R. Kozubski, Ch. Goyhenex, G.E. Murch, Chemical ordering phenomena in nanostructured FePt: Monte Carlo simulations, Phys. Chem. Chem. Phys. 17 (2015) 28394-28406.
DOI: 10.1039/c5cp01054c
Google Scholar
[11]
P. Sowa, R. Kozubski, A. Biborski, E.V. Levchenko, A.V. Evteev, I. V. Belova, G.E. Murch, V. Pierron-Bohnes, Self-diffusion and order-order, kinetics in B2-ordering AB binary systems with a tendency for triple defect formation: Monte Carlo simulation, Philos. Mag. 93 (2013) 1987-1998.
DOI: 10.1080/14786435.2012.742591
Google Scholar
[12]
P. Sowa, A. Biborski, M. Kozłowski, R. Kozubski, I. V. Belova, G. E. Murch, Atomistic origin of the thermodynamic activation energy for self-diffusion and order-order relaxation in intermetallic compounds I: analytical approach, Philos. Mag., 97 (2017) 1361-1374; 97, (2017) 1375-1397.
DOI: 10.1080/14786435.2017.1302101
Google Scholar
[13]
J. Betlej, P. Sowa, R. Kozubski, G. E. Murch, I. V. Belova, Self-Diffusion in a Triple-Defect A-B Binary System: Monte Carlo simulation, Comput. Mater. Sci. 172 (2020) 109316.
DOI: 10.1016/j.commatsci.2019.109316
Google Scholar
[14]
R. Kozubski, Thermal vacancies in B2 and L12 ordering alloys, Acta Metall.Mater. 41 (1993) 2565-2575.
DOI: 10.1016/0956-7151(93)90126-d
Google Scholar
[15]
F.W. Schapink, The distribution of vacancies in ordered alloys of CsCl- type, Scr.Metall. 3 (1969) 113–116.
DOI: 10.1016/0036-9748(69)90211-7
Google Scholar
[16]
S.H. Lim, G.E. Murch, W.A. Oates, Thermodynamic properties of ternary alloys from Monte Carlo simulations. J. Phys. Chem. Solids. 50 (1989) 1251e9; Equilibrium vacancy concentrations in non-stoichiometric B2 compounds by Monte Carlo simulations. J. Phys. Chem. Solids.; 53 (1992) 181e7.
DOI: 10.1016/0022-3697(92)90026-a
Google Scholar
[17]
A. Biborski, L. Zosiak, R. Kozubski, V. Pierron-Bohnes, Lattice-gas-decomposition model for vacancy formation correlated with B2 atomic ordering in intermetallics , Intermetallics, 17 (2009) 46-55.
DOI: 10.1016/j.intermet.2008.09.010
Google Scholar
[18]
A. Biborski, L.Zosiak, R. Kozubski, R. Sot, V. Pierron-Bohnes, Semi-Grand Canonical Monte Carlo simulation of ternary bcc lattice-gas decomposition: Vacancy formation correlated with B2 atomic ordering in A-B intermetallics, Intermetallics, 18 (2010) 2343-2352.
DOI: 10.1016/j.intermet.2010.08.007
Google Scholar
[19]
H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3 (1935) 107–115.
Google Scholar
[20]
P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, C. Massobrio, W. Pfeiler, Implementation of EAM – potential formalism with Monte Carlo simulation of order – order' relaxations in Ni3Al,, Defect and Diffusion Forum 194-199 (2001) 453-458.
DOI: 10.4028/www.scientific.net/ddf.194-199.453
Google Scholar
[21]
M. Kozlowski, R. Kozubski, C. Goyhenex, Surface induced superstructure transformation in L10 FePt by Monte Carlo simulations implemented with Analytic Bond-Order Potentials, Materials Letters 106 (2013) 273–276.
DOI: 10.1016/j.matlet.2013.04.029
Google Scholar
[22]
G. Henkelman, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.
DOI: 10.1063/1.1329672
Google Scholar
[23]
F. Haider, R. Kozubski, T.A. Abinandanan, Simulation Techniques, in: W. Pfeiler (Ed.), Alloy Physics. A comprehensive reference, Wiley, Weinheim 2007, pp.653-706.
DOI: 10.1002/9783527614196.ch12
Google Scholar
[24]
R.J. Glauber, Time‐dependent statistics of the Ising model, J.Math.Phys. 4 (1963) 294.
Google Scholar
[25]
K. Binder, I.L. Lebowitz, M.K. Phani, M.H. Kalos, Monte carlo study of the phase diagrams of binary alloys with face centered cubic lattice structure, Acta Metall. 29 (1981) 1655–1665.
DOI: 10.1016/0001-6160(81)90048-1
Google Scholar
[26]
A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys. 17 (1975) 10–18.
DOI: 10.1016/0021-9991(75)90060-1
Google Scholar
[27]
M.A. Islam, Einstein–Smoluchowski Diffusion Equation: A Discussion Physica Scripta 70 (2004) 120–125.
DOI: 10.1088/0031-8949/70/2-3/008
Google Scholar
[28]
T. Mohri, Y. Chen, First-principles investigation of L10-disordered phase equilibrium in Fe–Pt system, Mater. Trans. 43 (2002) 2104–9.
DOI: 10.2320/matertrans.43.2104
Google Scholar
[29]
M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, W. Pfeiler, L10- ordering kinetics in FePt nano-layers: Monte Carlo simulation, Comput. Mater. Sci. 33 (2005) 287-295.
DOI: 10.1016/j.commatsci.2004.12.012
Google Scholar
[30]
M. Rennhofer, M. Kozlowski, B. Laenens, B. Sepiol, R. Kozubski, D. Smeets, A. Vantomme, Study of reorientation processes in L10-ordered FePt thin films, Intermetallics, 18 (2010) 2069-2076.
DOI: 10.1016/j.intermet.2010.06.011
Google Scholar
[31]
H.-E. Schaefer, K. Frenner, R. Würschum, Time-Differential Length Change Measurements for Thermal Defect Investigations: Intermetallic B2-FeAl and B2-NiAl Compounds, a Case Study, Phys. Rev. Letters, 82 (1999) 948-951.
DOI: 10.1103/physrevlett.82.948
Google Scholar
[32]
A. Biborski, R. Kozubski, V. Pierron-Bohnes, Order-order' kinetics in 'triple-defect, B2-ordered binary intermetallics: Kinetic Monte Carlo simulation, Diffusion Foundations, 2 (2014) 191-220.
DOI: 10.4028/www.scientific.net/df.2.191
Google Scholar
[33]
H. Bakker, Tracer Diffusion in Concentrated Alloys, in: G. E. Murch and A. S. Nowick (Eds.), Diffusion in crystalline solids, Academic Press, Orlando, 1984, p.189–256.
DOI: 10.1016/b978-0-12-522662-2.50009-1
Google Scholar
[34]
A. Paul, A.A. Kodentsov, F. Van Loo, On diffusion in the β-NiAl phase, J. Alloys Comp. 403 (2005) 147–153.
DOI: 10.1016/j.jallcom.2005.04.194
Google Scholar