Vacancy-Mediated Diffusion and Diffusion-Controlled Processes in Ordered Binary Intermetallics by Kinetic Monte Carlo Simulations

Article Preview

Abstract:

We review the results of our Monte Carlo simulation studies carried out within the past two decades in the area of atomic-migration-controlled phenomena in intermetallic compounds. The review aims at showing the high potential of Monte Carlo methods in modelling both the equilibrium states of the systems and the kinetics of the running processes. We focus on three particular problems: (i) the atomistic origin of the complexity of the ‘order-order’ relaxations in γ’-Ni3Al; (ii) surface-induced ordering phenomena in γ-FePt and (iii) ‘order—order’ kinetics and self-diffusion in the ‘triple-defect’ β-NiAl. The latter investigation demonstrated how diverse Monte Carlo techniques may be used to model the phenomena where equilibrium thermodynamics interplays and competes with kinetic effects.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 29)

Pages:

95-115

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag Berlin Heidelberg, (2007).

Google Scholar

[2] A.D. Smigelskas, E.O. Kirkendall, Zinc Diffusion in Alpha Brass, Trans. AIME 171 (1947) 130-142.

Google Scholar

[3] H.-E. Schaefer, K. Frenner, R. Würschum, Time-Differential Length Change Measurements for Thermal Defect Investigations: Intermetallic B2-FeAl and B2-NiAl Compounds, a Case Study, Phys. Rev. Letters, 82 (1999) 948-951.

DOI: 10.1103/physrevlett.82.948

Google Scholar

[4] P. Sowa, Atomistic simulation of mass transport phenomena in inhomogeneous intermetallic systems, PhD Thesis, Jagiellonian University in Krakow, 2017, https://fais.uj.edu.pl/ documents/41628/137691040/main-JVr9VLic.pdf/9c8903e9-6bc7-43b9-87d3-855f5816ccee.

Google Scholar

[5] R. Kozubski, M.C. Cadeville, In situ resistometric investigation of ordering kinetics in Ni3Al, J.Phys.F. : Met. Phys. 18 (1988) 2569-2575.

DOI: 10.1088/0305-4608/18/12/008

Google Scholar

[6] R. Kozubski, W. Pfeiler, Kinetics of defect recovery and long-range ordering in Ni3Al+B. II. Atomic jump processes studied by order-order, relaxation experiments, Acta Mater. 44 (1996) 1573-1579.

DOI: 10.1016/1359-6454(95)00275-8

Google Scholar

[7] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W.Pfeiler, Monte Carlo computer simulation of order-order, kinetics in L12 - ordered Ni3Al binary system, Phys.Rev.B 63 (2001)174109/1-14.

DOI: 10.1557/proc-646-n5.10.1

Google Scholar

[8] M. Nikiel, R. Kozubski, Order-order, kinetics in Ni50.5Al49.5 single crystal by quasi-residual resistometry, Intermetallics 25 (2012) 5-8.

DOI: 10.1016/j.intermet.2012.02.002

Google Scholar

[9] M. Kozłowski, R. Kozubski, Ch. Goyhenex, V. Pierron-Bohnes, M. Rennhofer, S. Malinov, Atomic ordering in nano-layered FePt, Intermetallics 17 (2009) 907-913.

DOI: 10.1016/j.intermet.2009.03.019

Google Scholar

[10] S. Brodacka, M. Kozlowski, R. Kozubski, Ch. Goyhenex, G.E. Murch, Chemical ordering phenomena in nanostructured FePt: Monte Carlo simulations, Phys. Chem. Chem. Phys. 17 (2015) 28394-28406.

DOI: 10.1039/c5cp01054c

Google Scholar

[11] P. Sowa, R. Kozubski, A. Biborski, E.V. Levchenko, A.V. Evteev, I. V. Belova, G.E. Murch, V. Pierron-Bohnes, Self-diffusion and order-order, kinetics in B2-ordering AB binary systems with a tendency for triple defect formation: Monte Carlo simulation, Philos. Mag. 93 (2013) 1987-1998.

DOI: 10.1080/14786435.2012.742591

Google Scholar

[12] P. Sowa, A. Biborski, M. Kozłowski, R. Kozubski, I. V. Belova, G. E. Murch, Atomistic origin of the thermodynamic activation energy for self-diffusion and order-order relaxation in intermetallic compounds I: analytical approach, Philos. Mag., 97 (2017) 1361-1374; 97, (2017) 1375-1397.

DOI: 10.1080/14786435.2017.1302101

Google Scholar

[13] J. Betlej, P. Sowa, R. Kozubski, G. E. Murch, I. V. Belova, Self-Diffusion in a Triple-Defect A-B Binary System: Monte Carlo simulation, Comput. Mater. Sci. 172 (2020) 109316.

DOI: 10.1016/j.commatsci.2019.109316

Google Scholar

[14] R. Kozubski, Thermal vacancies in B2 and L12 ordering alloys, Acta Metall.Mater. 41 (1993) 2565-2575.

DOI: 10.1016/0956-7151(93)90126-d

Google Scholar

[15] F.W. Schapink, The distribution of vacancies in ordered alloys of CsCl- type, Scr.Metall. 3 (1969) 113–116.

DOI: 10.1016/0036-9748(69)90211-7

Google Scholar

[16] S.H. Lim, G.E. Murch, W.A. Oates, Thermodynamic properties of ternary alloys from Monte Carlo simulations. J. Phys. Chem. Solids. 50 (1989) 1251e9; Equilibrium vacancy concentrations in non-stoichiometric B2 compounds by Monte Carlo simulations. J. Phys. Chem. Solids.; 53 (1992) 181e7.

DOI: 10.1016/0022-3697(92)90026-a

Google Scholar

[17] A. Biborski, L. Zosiak, R. Kozubski, V. Pierron-Bohnes, Lattice-gas-decomposition model for vacancy formation correlated with B2 atomic ordering in intermetallics , Intermetallics, 17 (2009) 46-55.

DOI: 10.1016/j.intermet.2008.09.010

Google Scholar

[18] A. Biborski, L.Zosiak, R. Kozubski, R. Sot, V. Pierron-Bohnes, Semi-Grand Canonical Monte Carlo simulation of ternary bcc lattice-gas decomposition: Vacancy formation correlated with B2 atomic ordering in A-B intermetallics, Intermetallics, 18 (2010) 2343-2352.

DOI: 10.1016/j.intermet.2010.08.007

Google Scholar

[19] H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3 (1935) 107–115.

Google Scholar

[20] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, C. Massobrio, W. Pfeiler, Implementation of EAM – potential formalism with Monte Carlo simulation of order – order' relaxations in Ni3Al,, Defect and Diffusion Forum 194-199 (2001) 453-458.

DOI: 10.4028/www.scientific.net/ddf.194-199.453

Google Scholar

[21] M. Kozlowski, R. Kozubski, C. Goyhenex, Surface induced superstructure transformation in L10 FePt by Monte Carlo simulations implemented with Analytic Bond-Order Potentials, Materials Letters 106 (2013) 273–276.

DOI: 10.1016/j.matlet.2013.04.029

Google Scholar

[22] G. Henkelman, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.

DOI: 10.1063/1.1329672

Google Scholar

[23] F. Haider, R. Kozubski, T.A. Abinandanan, Simulation Techniques, in: W. Pfeiler (Ed.), Alloy Physics. A comprehensive reference, Wiley, Weinheim 2007, pp.653-706.

DOI: 10.1002/9783527614196.ch12

Google Scholar

[24] R.J. Glauber, Time‐dependent statistics of the Ising model, J.Math.Phys. 4 (1963) 294.

Google Scholar

[25] K. Binder, I.L. Lebowitz, M.K. Phani, M.H. Kalos, Monte carlo study of the phase diagrams of binary alloys with face centered cubic lattice structure, Acta Metall. 29 (1981) 1655–1665.

DOI: 10.1016/0001-6160(81)90048-1

Google Scholar

[26] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys. 17 (1975) 10–18.

DOI: 10.1016/0021-9991(75)90060-1

Google Scholar

[27] M.A. Islam, Einstein–Smoluchowski Diffusion Equation: A Discussion Physica Scripta 70 (2004) 120–125.

DOI: 10.1088/0031-8949/70/2-3/008

Google Scholar

[28] T. Mohri, Y. Chen, First-principles investigation of L10-disordered phase equilibrium in Fe–Pt system, Mater. Trans. 43 (2002) 2104–9.

DOI: 10.2320/matertrans.43.2104

Google Scholar

[29] M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, W. Pfeiler, L10- ordering kinetics in FePt nano-layers: Monte Carlo simulation, Comput. Mater. Sci. 33 (2005) 287-295.

DOI: 10.1016/j.commatsci.2004.12.012

Google Scholar

[30] M. Rennhofer, M. Kozlowski, B. Laenens, B. Sepiol, R. Kozubski, D. Smeets, A. Vantomme, Study of reorientation processes in L10-ordered FePt thin films, Intermetallics, 18 (2010) 2069-2076.

DOI: 10.1016/j.intermet.2010.06.011

Google Scholar

[31] H.-E. Schaefer, K. Frenner, R. Würschum, Time-Differential Length Change Measurements for Thermal Defect Investigations: Intermetallic B2-FeAl and B2-NiAl Compounds, a Case Study, Phys. Rev. Letters, 82 (1999) 948-951.

DOI: 10.1103/physrevlett.82.948

Google Scholar

[32] A. Biborski, R. Kozubski, V. Pierron-Bohnes, Order-order' kinetics in 'triple-defect, B2-ordered binary intermetallics: Kinetic Monte Carlo simulation, Diffusion Foundations, 2 (2014) 191-220.

DOI: 10.4028/www.scientific.net/df.2.191

Google Scholar

[33] H. Bakker, Tracer Diffusion in Concentrated Alloys, in: G. E. Murch and A. S. Nowick (Eds.), Diffusion in crystalline solids, Academic Press, Orlando, 1984, p.189–256.

DOI: 10.1016/b978-0-12-522662-2.50009-1

Google Scholar

[34] A. Paul, A.A. Kodentsov, F. Van Loo, On diffusion in the β-NiAl phase, J. Alloys Comp. 403 (2005) 147–153.

DOI: 10.1016/j.jallcom.2005.04.194

Google Scholar