Bombardment Induced Ion Transport through Ion Conducting Glasses

Article Preview

Abstract:

The recently developed bombardment induced ion transport (BIIT) technique is reviewed. BIIT is based on shining an energy-selected alkali ion beam at the surface of a sample of interest. Attachment of these ions leads to the build-up of a surface potential and a surface particle density. This in turn generates the corresponding gradients which induce ion transport towards a single metal electrode connected to the backside of the sample where it is detected as a neutralization current. Two different versions of BIIT are presented, i.) the native ion BIIT and ii.) the foreign ion BIIT. The former is demonstrated to provide access to absolute ionic conductivities and activation energies, the latter leads to the generation of electrodiffusion profiles. Theoretical modelling of these concentration profiles by means of the Nernst-Planck-Poisson theory allows to deduce the concentration dependence of diffusion coefficients.

You might also be interested in these eBooks

Info:

[1] A. Macfarlane, G. Martin, Glass: A world history, University of Chicago Press, Chicago, (2002).

Google Scholar

[2] A. Bunde, K. Funke, M.D. Ingram, Solid State Ionics 105 (1998) 1–13.

Google Scholar

[3] N.P. Bansal, R.H. Doremus, Handbook of Glass Properties, Elsevier Science, (2013).

Google Scholar

[4] T. Kudo, K. Fueki, Solid state ionics, Kodansha; VCH, Tokyo, Japan, Weinheim, F.R.G., New York, NY, USA, (1990).

Google Scholar

[5] E. Warburg, Ann. Phys. 257 (1884) 622–646.

Google Scholar

[6] C. Tubandt, E. Lorenz, Zeitschrift für Physikalische Chemie - Stöchiometrie und Verwandschaftslehre 87 (1914) 513–542.

DOI: 10.1515/zpch-1914-8737

Google Scholar

[7] C. Tubandt, S. Eggert, Zeitschrift für Anorganische und Allgemeine Chemie 110 (1920) 196–236.

Google Scholar

[8] C. Tubandt, H. Reinhold, Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie 31 (1925) 84–88.

Google Scholar

[9] J. Frenkel, Zeitschrift für Physik 35 (1926) 652–669.

Google Scholar

[10] W. Jost, Zeitschrift für Physikalische Chemie - Abteilung B 7 (1930) 234–242.

Google Scholar

[11] C. Wagner, W. Schottky, Zeitschrift für Physikalische Chemie - Abteilung B 11 (1930) 163–210.

Google Scholar

[12] J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2 (1990) 132–138.

Google Scholar

[13] J.R. Macdonald, Impedance spectroscopy: Emphasizing solid materials and systems, Wiley, New York, (1987).

Google Scholar

[14] G.H. Sørland, Dynamic pulsed-field-gradient NMR, Springer, Heidelberg, (2014).

Google Scholar

[15] M. Schäfer, K. -M. Weitzel, PCCP 13 (2011) 20112–20122.

Google Scholar

[16] P.V. Menezes, J. Martin, M. Schäfer, H. Staesche, B. Roling, K. -M. Weitzel, PCCP 13 (2011) 20123–20128.

Google Scholar

[17] I. Rubinstein, Electro-diffusion of ions, Society for Industrial and Applied Mathematics, Philadelphia, (1990).

Google Scholar

[18] I.G. Brown, The physics and technology of ion sources, 2nd ed., Wiley-VCH, Weinheim, (2004).

Google Scholar

[19] O.W. Richardson, Philosophical Magazine 17 (1909) 813–833.

Google Scholar

[20] O.W. Richardson, The Emission of Electricity from Hot Bodies., Longman's Green and Company, London, (1921).

Google Scholar

[21] S. Dushman, Reviews of Modern Physics 2 (1930) 381–476.

Google Scholar

[22] O.W. Richardson, Philosophical Magazine 23 (1912) 594–627.

Google Scholar

[23] S. Dushman, Physical Review 21 (1923) 623–636.

Google Scholar

[24] O.W. Richardson, Physical Review 23 (1924) 153–155.

Google Scholar

[25] C.D. Child, Physical Review 32 (1911) 492–511.

Google Scholar

[26] I. Langmuir, Physical Review 2 (1913) 450–486.

Google Scholar

[27] W. Schottky, Zeitschrift für Physik 14 (1923) 63–106.

Google Scholar

[28] T. Kolling, A. Schlemmer, C. Pietzonka, B. Harbrecht, K. -M. Weitzel, Journal of Applied Physics 107 (2010) 14105.

Google Scholar

[29] J.P. Blewett, E.J. Jones, Physical Review 50 (1936) 464–468.

Google Scholar

[30] K.K. Chow, H.S. Maddix, P. Chorney, Applied Physics Letters 10 (1967) 256.

Google Scholar

[31] A.N. Pargellis, M. Seidl, J. Appl. Phys. 49 (1978) 4933.

Google Scholar

[32] Y. Satoh, M. Takebe, K. Iinuma, Review of Scientific Instruments 58 (1987) 138–140.

Google Scholar

[33] S.I. Kim, M. Seidl, Journal of Applied Physics 67 (1990) 2704–2710.

Google Scholar

[34] M.J. Hogan, P.P. Ong, J.L. Ang, K.K. Cheang, International Journal of Mass Spectrometry and Ion Processes 116 (1992) 249–256.

DOI: 10.1016/0168-1176(92)80043-z

Google Scholar

[35] T.L. Tan, P.P. Ong, T.M. Fong, K.A. Soo, International Journal of Mass Spectrometry and Ion Processes 134 (1994) 221–228.

DOI: 10.1016/0168-1176(94)03990-9

Google Scholar

[36] D.W. Hughes, R.K. Feeney, D.N. Hill, Review of Scientific Instruments 51 (1980) 1471–1472.

Google Scholar

[37] S. Schuld, M. Schäfer, K. -M. Weitzel, in preparation (2016).

Google Scholar

[38] S. Schulze, M. Schäfer, A. Greiner, K. -M. Weitzel, PCCP 15 (2013) 1481–1487.

Google Scholar

[39] V. Wesp, M. Hermann, M. Schäfer, J. Hühn, W.J. Parak, K. -M. Weitzel, PCCP 18 (2016) 4345-4351.

Google Scholar

[40] J. Martin, M. Schäfer, K. -M. Weitzel, Journal of Non-Crystalline Solids 430 (2015) 73–78.

Google Scholar

[41] L. Rossrucker, P.V. Menezes, J. Zakel, M. Schäfer, B. Roling, K. -M. Weitzel, Zeitschrift für Physikalische Chemie 226 (2012) 341–353.

DOI: 10.1524/zpch.2012.0215

Google Scholar

[42] V. Wesp, J. Zakel, M. Schäfer, I. Paulus, A. Greiner, K. -M. Weitzel, Electrochimica Acta 170 (2015) 122–130.

DOI: 10.1016/j.electacta.2015.04.117

Google Scholar

[43] F. Berkemeier, M.S. Abouzari, G. Schmitz, Applied Physics Letters 90 (2007).

Google Scholar

[44] S.J. Rothman, in: G.E. Murch, A.S. Nowick (Eds. ), Diffusion in crystalline solids, Academic Press, 1984, p.1–61.

Google Scholar

[45] H. Mehrer, Materials Transactions, JIM 37 (1996) 1259–1280.

Google Scholar

[46] T. Nelis, R. Payling, Glow Discharge Optical Emission Spectroscopy, Springer, New York, (2004).

Google Scholar

[47] M. Wilke, G. Teichert, R. Gemma, A. Pundt, R. Kirchheim, H. Romanus, P. Schaaf, Thin Solid Films 520 (2011) 1660–1667.

DOI: 10.1016/j.tsf.2011.07.058

Google Scholar

[48] T.F. Kelly, M.K. Miller, The Review of scientific instruments 78 (2007) 31101.

Google Scholar

[49] G. Schmitz, Ultramicroscopy 159 (2015) XII–XIII.

Google Scholar

[50] P. van der Heide, Secondary ion mass spectrometry: An introduction to principles and practices, Wiley, Hoboken, New Jersey, (2014).

Google Scholar

[51] A. Benninghoven, Angewandte Chemie-International Edition in English 33 (1994) 1023–1043.

Google Scholar

[52] J.C. Vickerman, D. Briggs, ToF-SIMS: Surface Analysis by Mass Spectrometry, IMPublications LLP, (2001).

Google Scholar

[53] M. Rohnke, M. Falk, A. -K. Huber, J. Janek, Journal of Power Sources 221 (2013) 97–107.

Google Scholar

[54] R.A. de Souza, J. Zehnpfenning, M. Martin, J. Maier, Solid State Ionics 176 (2005) 1465–1471.

DOI: 10.1016/j.ssi.2005.03.012

Google Scholar

[55] W. Nernst, Z. Phys. Chem. 2 (1888) 613.

Google Scholar

[56] W. Nernst, Z. Phys. Chem. 4 (1889) 129.

Google Scholar

[57] M. Planck, Ann. Phys. Chem. 39 (1890) 161.

Google Scholar

[58] M. Planck, Ann. Phys. Chem. 40 (1890) 561.

Google Scholar

[59] C.H. Hamann, W. Vielstich, Elektrochemie, 4th ed., Wiley-VCH, Weinheim, (2005).

Google Scholar

[60] I. Rubinstein, B. Zaltzman, Advances in Colloid and Interface Science 159 (2010) 117–129.

Google Scholar

[61] C. Schmeiser, A. Unterreiter, R. Weiss, Mathematical Models & Methods in Applied Sciences 3 (1993) 125–144.

Google Scholar

[62] F. Assad, K. Banoo, M. Lundstrom, Solid-State Electronics 42 (1998) 283–295.

DOI: 10.1016/s0038-1101(97)00263-3

Google Scholar

[63] W. Nonner, B. Eisenberg, Journal of Molecular Liquids 87 (2000) 149–162.

Google Scholar

[64] H. Cohen, J.W. Cooley, Biophysical Journal 5 (1965) 145–162.

Google Scholar

[65] T.R. Brumleve, R.P. Buck, Journal of Electroanalytical Chemistry 90 (1978) 1–31.

Google Scholar

[66] T. Sokalski, P. Lingenfelter, A. Lewenstam, Journal of Physical Chemistry B 107 (2003) 2443–2452.

Google Scholar

[67] M.Z. Bazant, K. Thornton, A. Ajdari, Physical Review E 70 (2004) 21506.

Google Scholar

[68] K.O. Ladipo, P. Berg, S.J. Kimmerle, A. Novruzi, Journal of Chemical Physics 134 (2011).

Google Scholar

[69] D. Constantin, Z.S. Siwy, Physical Review E 76 (2007).

Google Scholar

[70] T. Wallmersperger, B. Akle, D. Leo, B. Kroplin, Composites Science and Technology 68 (2008) 1173–1180.

DOI: 10.1016/j.compscitech.2007.06.001

Google Scholar

[71] R.A. de Souza, M. Martin, Physical Chemistry Chemical Physics 10 (2008) 2356–2367.

Google Scholar

[72] M. Landstorfer, T. Jacob, Chemical Society Reviews 42 (2013) 3234–3252.

Google Scholar

[73] W. Dyrka, A.T. Augousti, M. Kotulska, Journal of Computational Chemistry 29 (2008) 1876–1888.

Google Scholar

[74] G.W. Arnold, Journal of Non-Crystalline Solids 179 (1994) 288–299.

Google Scholar

[75] N.Q. Lam, G.K. Leaf, Journal of Materials Research 1 (1986) 251–267.

Google Scholar

[76] J. Jagielski, G. Gawlik, A. Zalar, M. Mozetic, Informacije midem - Journal of microelectronics electronic components and materials 29 (1999) 61–67.

Google Scholar

[77] G. Borchardt, S. Scherrer, S. Weber, Fresenius Zeitschrift fur Analytische Chemie 329 (1987) 129–132.

DOI: 10.1007/bf00469123

Google Scholar

[78] R.T. Short, J.M. McMahon, W.M. Holland, P.J. Todd, Journal of the American Society for Mass Spectrometry 5 (1994) 37–43.

Google Scholar

[79] R. Gibbons, M.G. Dowsett, J. Kelly, P. Blenkinsopp, R. Hill, D. Richards, N. Loibl, Applied Surface Science 203 (2003) 343–347.

DOI: 10.1016/s0169-4332(02)00673-6

Google Scholar

[80] H. Jain, H.L. Downing, N.L. Peterson, Journal of Non-Crystalline Solids 64 (1984) 335–349.

Google Scholar

[81] A.H. Verhoef, H.W. den Hartog, Journal of Non-Crystalline Solids 182 (1995) 221–234.

Google Scholar

[82] U. Schoo, C. Cramer, H. Mehrer, Solid State Ionics 138 (2000) 105–114.

DOI: 10.1016/s0167-2738(00)00773-6

Google Scholar

[83] A.W. Imre, S.V. Divinski, S. Voss, F. Berkemeier, H. Mehrer, Journal of Non-Crystalline Solids 352 (2006) 783–788.

DOI: 10.1016/j.jnoncrysol.2006.02.008

Google Scholar

[84] G. Berger, R. Gildenhaar, U. Ploska, Biomaterials 16 (1995) 1241–1248.

Google Scholar

[85] T. Kasuga, M. Sawada, M. Nogami, Y. Abe, Biomaterials 20 (1999) 1415–1420.

Google Scholar

[86] I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles, Biomaterials 25 (2004) 491–499.

Google Scholar

[87] L. Hench, J. Wilson, Science 226 (1984) 630–636.

Google Scholar

[88] J. Martin, D. Budina, J. Zakel, M. Schäfer, K. -M. Weitzel, Proceedings of the IEEE International Conference on Solid Dielectrics, Bologna (2013) 1095–1098.

Google Scholar

[89] W. YAO, S.W. Martin, Solid State Ionics 178 (2008) 1777–1784.

Google Scholar

[90] K. Otto, M. Milberg, Journal of the American Ceramic Society 51 (1968) 326–329.

Google Scholar

[91] F.A. Fusco, H.L. Tuller, D.P. Button, Materials Science and Engineering: B 13 (1992) 157–164.

Google Scholar

[92] D.R. Lide, Handbook of Chemistry and Physics, CRC Press, (2004).

Google Scholar

[93] A. Bunde, M.D. Ingram, P. Maass, Journal of Non-Crystalline Solids 172 (1994) 1222–1236.

DOI: 10.1016/0022-3093(94)90647-5

Google Scholar

[94] A. Pradel, M. Ribes, Journal of Non-Crystalline Solids 172-174 (1994) 1315–1323.

DOI: 10.1016/0022-3093(94)90658-0

Google Scholar

[95] R.A. de Souza, M. Martin, phys. stat. sol. (c) 4 (2007) 1785–1801.

Google Scholar

[96] P.R. Boudewijn, H.J. Werner, in: A. Benninghoven (Ed. ), Secondary ion mass spectrometry: SIMS V proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985, Springer-Verlag, Berlin, New York, (1986).

DOI: 10.1007/978-3-642-82724-2

Google Scholar

[97] D. Budina, J. Zakel, J. Martin, P.V. Menezes, M. Schäfer, K. -M. Weitzel, Zeitschrift für Physikalische Chemie 228 (2014) 609–627.

DOI: 10.1515/zpch-2014-0459

Google Scholar

[98] S. Carregal-Romero, P. Rinklin, S. Schulze, M. Schäfer, A. Ott, D. Hühn, X. Yu, B. Wolfrum, K. -M. Weitzel, W.J. Parak, Macromolecular Rapid Communications 34 (2013) 1820–1826.

DOI: 10.1002/marc.201300571

Google Scholar

[99] J. Zakel, P.V. Menezes, M. Schäfer, K. -M. Weitzel, Solid State Ionics 242 (2013) 20–25.

Google Scholar

[100] D.G. Ashworth, R. Oven, M.C. Page, Journal of Physics D-Applied Physics 28 (1995) 657–664.

Google Scholar

[101] J. Fleig, Physical Chemistry Chemical Physics 11 (2009) 3144–3151.

Google Scholar

[102] J. Martin, S. Mehrwald, M. Schäfer, T. Kramer, C. Jooss, K. -M. Weitzel, Electrochimica Acta 191 (2016) 616-623.

DOI: 10.1016/j.electacta.2016.01.061

Google Scholar

[103] S. Schulze, J. Zakel, M. Schäfer, K. -M. Weitzel, IEEE-Transactions of Dielectrics and Electrical Insulation 19 (2012) 1167–1174.

DOI: 10.1109/tdei.2012.6259985

Google Scholar

[104] J.G. Kirkwood, J. Chem. Phys. 2 (1934) 767.

Google Scholar

[105] M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Physical Review Letters 106 (2011).

Google Scholar

[106] M.S. Kilic, M.Z. Bazant, A. Ajdari, Physical Review E 75 (2007) 21502.

Google Scholar

[107] M.S. Kilic, M.Z. Bazant, A. Ajdari, Physical Review E 75 (2007) 21503.

Google Scholar

[108] M. Schäfer, K. -M. Weitzel, Solid State Ionics 282 (2015) 70–75.

Google Scholar

[109] E. Samson, J. Marchand, Journal of colloid and interface science 215 (1999) 1–8.

Google Scholar

[110] J. Maier, Zeitschrift für Physikalische Chemie 217 (2003) 415–436.

Google Scholar

[111] J. Maier, Physical Chemistry Chemical Physics 11 (2009) 3011–3022.

Google Scholar

[112] K. Compaan, Y. Haven, Transactions of the Faraday Society 52 (1956) 786–801.

Google Scholar

[113] Manning Jr., Physical Review 116 (1959) 819–827.

Google Scholar

[114] G.E. Murch, Solid State Ionics 7 (1982) 177–198.

Google Scholar

[115] E. Bychkov, D.L. Price, A. Lapp, Journal of Non-Crystalline Solids 293 (2001) 211–219.

Google Scholar

[116] R.J. Charles, Journal of the American Ceramic Society 48 (1965) 432.

Google Scholar

[117] D.E. Day, Journal of Non-Crystalline Solids 21 (1976) 343–372.

Google Scholar

[118] A. Bunde, M.D. Ingram, P. Maass, K.L. NgaiI, Journal of Physics A - Mathematical and General 24 (1991) L881-L886.

Google Scholar

[119] M.D. Ingram, Glastechnische Berichte-Glass Science and Technology 67 (1994) 151–155.

Google Scholar

[120] M.D. Ingram, P. Maass, A. Bunde, Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 95 (1991) 1002–1006.

Google Scholar

[121] C. Cramer, Y. Gao, S. Brunklaus, E. Ratai, Zeitschrift für Physikalische Chemie 218 (2004) 1413–1428.

DOI: 10.1524/zpch.218.12.1413.53830

Google Scholar

[122] E.M.T. Njiokep, H. Mehrer, Solid State Ionics 177 (2006) 2839–2844.

Google Scholar

[123] A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Journal of Physical Chemistry C 115 (2011) 23784–23789.

Google Scholar

[124] A.W. Imre, A.A. Voss, H. Mehrer, Journal of Non-Crystalline Solids 333 (2004) 231–239.

Google Scholar

[125] P. Maass, R. Peibst, Journal of Non-Crystalline Solids 352 (2006) 5178–5187.

DOI: 10.1016/j.jnoncrysol.2005.12.061

Google Scholar

[126] H. Mehrer, Zeitschrift für Physikalische Chemie 223 (2009) 1143–1160.

Google Scholar