p.1
p.44
p.59
p.107
p.144
Bombardment Induced Ion Transport through Ion Conducting Glasses
Abstract:
The recently developed bombardment induced ion transport (BIIT) technique is reviewed. BIIT is based on shining an energy-selected alkali ion beam at the surface of a sample of interest. Attachment of these ions leads to the build-up of a surface potential and a surface particle density. This in turn generates the corresponding gradients which induce ion transport towards a single metal electrode connected to the backside of the sample where it is detected as a neutralization current. Two different versions of BIIT are presented, i.) the native ion BIIT and ii.) the foreign ion BIIT. The former is demonstrated to provide access to absolute ionic conductivities and activation energies, the latter leads to the generation of electrodiffusion profiles. Theoretical modelling of these concentration profiles by means of the Nernst-Planck-Poisson theory allows to deduce the concentration dependence of diffusion coefficients.
Info:
Periodical:
Pages:
107-143
Citation:
Online since:
February 2016
Authors:
Keywords:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] A. Macfarlane, G. Martin, Glass: A world history, University of Chicago Press, Chicago, (2002).
[2] A. Bunde, K. Funke, M.D. Ingram, Solid State Ionics 105 (1998) 1–13.
[3] N.P. Bansal, R.H. Doremus, Handbook of Glass Properties, Elsevier Science, (2013).
[4] T. Kudo, K. Fueki, Solid state ionics, Kodansha; VCH, Tokyo, Japan, Weinheim, F.R.G., New York, NY, USA, (1990).
[5] E. Warburg, Ann. Phys. 257 (1884) 622–646.
[6] C. Tubandt, E. Lorenz, Zeitschrift für Physikalische Chemie - Stöchiometrie und Verwandschaftslehre 87 (1914) 513–542.
[7] C. Tubandt, S. Eggert, Zeitschrift für Anorganische und Allgemeine Chemie 110 (1920) 196–236.
[8] C. Tubandt, H. Reinhold, Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie 31 (1925) 84–88.
[9] J. Frenkel, Zeitschrift für Physik 35 (1926) 652–669.
[10] W. Jost, Zeitschrift für Physikalische Chemie - Abteilung B 7 (1930) 234–242.
[11] C. Wagner, W. Schottky, Zeitschrift für Physikalische Chemie - Abteilung B 11 (1930) 163–210.
[12] J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2 (1990) 132–138.
[13] J.R. Macdonald, Impedance spectroscopy: Emphasizing solid materials and systems, Wiley, New York, (1987).
[14] G.H. Sørland, Dynamic pulsed-field-gradient NMR, Springer, Heidelberg, (2014).
[15] M. Schäfer, K. -M. Weitzel, PCCP 13 (2011) 20112–20122.
[16] P.V. Menezes, J. Martin, M. Schäfer, H. Staesche, B. Roling, K. -M. Weitzel, PCCP 13 (2011) 20123–20128.
[17] I. Rubinstein, Electro-diffusion of ions, Society for Industrial and Applied Mathematics, Philadelphia, (1990).
[18] I.G. Brown, The physics and technology of ion sources, 2nd ed., Wiley-VCH, Weinheim, (2004).
[19] O.W. Richardson, Philosophical Magazine 17 (1909) 813–833.
[20] O.W. Richardson, The Emission of Electricity from Hot Bodies., Longman's Green and Company, London, (1921).
[21] S. Dushman, Reviews of Modern Physics 2 (1930) 381–476.
[22] O.W. Richardson, Philosophical Magazine 23 (1912) 594–627.
[23] S. Dushman, Physical Review 21 (1923) 623–636.
[24] O.W. Richardson, Physical Review 23 (1924) 153–155.
[25] C.D. Child, Physical Review 32 (1911) 492–511.
[26] I. Langmuir, Physical Review 2 (1913) 450–486.
[27] W. Schottky, Zeitschrift für Physik 14 (1923) 63–106.
[28] T. Kolling, A. Schlemmer, C. Pietzonka, B. Harbrecht, K. -M. Weitzel, Journal of Applied Physics 107 (2010) 14105.
[29] J.P. Blewett, E.J. Jones, Physical Review 50 (1936) 464–468.
[30] K.K. Chow, H.S. Maddix, P. Chorney, Applied Physics Letters 10 (1967) 256.
[31] A.N. Pargellis, M. Seidl, J. Appl. Phys. 49 (1978) 4933.
[32] Y. Satoh, M. Takebe, K. Iinuma, Review of Scientific Instruments 58 (1987) 138–140.
[33] S.I. Kim, M. Seidl, Journal of Applied Physics 67 (1990) 2704–2710.
[34] M.J. Hogan, P.P. Ong, J.L. Ang, K.K. Cheang, International Journal of Mass Spectrometry and Ion Processes 116 (1992) 249–256.
[35] T.L. Tan, P.P. Ong, T.M. Fong, K.A. Soo, International Journal of Mass Spectrometry and Ion Processes 134 (1994) 221–228.
[36] D.W. Hughes, R.K. Feeney, D.N. Hill, Review of Scientific Instruments 51 (1980) 1471–1472.
[37] S. Schuld, M. Schäfer, K. -M. Weitzel, in preparation (2016).
[38] S. Schulze, M. Schäfer, A. Greiner, K. -M. Weitzel, PCCP 15 (2013) 1481–1487.
[39] V. Wesp, M. Hermann, M. Schäfer, J. Hühn, W.J. Parak, K. -M. Weitzel, PCCP 18 (2016) 4345-4351.
[40] J. Martin, M. Schäfer, K. -M. Weitzel, Journal of Non-Crystalline Solids 430 (2015) 73–78.
[41] L. Rossrucker, P.V. Menezes, J. Zakel, M. Schäfer, B. Roling, K. -M. Weitzel, Zeitschrift für Physikalische Chemie 226 (2012) 341–353.
[42] V. Wesp, J. Zakel, M. Schäfer, I. Paulus, A. Greiner, K. -M. Weitzel, Electrochimica Acta 170 (2015) 122–130.
[43] F. Berkemeier, M.S. Abouzari, G. Schmitz, Applied Physics Letters 90 (2007).
[44] S.J. Rothman, in: G.E. Murch, A.S. Nowick (Eds. ), Diffusion in crystalline solids, Academic Press, 1984, p.1–61.
[45] H. Mehrer, Materials Transactions, JIM 37 (1996) 1259–1280.
[46] T. Nelis, R. Payling, Glow Discharge Optical Emission Spectroscopy, Springer, New York, (2004).
[47] M. Wilke, G. Teichert, R. Gemma, A. Pundt, R. Kirchheim, H. Romanus, P. Schaaf, Thin Solid Films 520 (2011) 1660–1667.
[48] T.F. Kelly, M.K. Miller, The Review of scientific instruments 78 (2007) 31101.
[49] G. Schmitz, Ultramicroscopy 159 (2015) XII–XIII.
[50] P. van der Heide, Secondary ion mass spectrometry: An introduction to principles and practices, Wiley, Hoboken, New Jersey, (2014).
[51] A. Benninghoven, Angewandte Chemie-International Edition in English 33 (1994) 1023–1043.
[52] J.C. Vickerman, D. Briggs, ToF-SIMS: Surface Analysis by Mass Spectrometry, IMPublications LLP, (2001).
[53] M. Rohnke, M. Falk, A. -K. Huber, J. Janek, Journal of Power Sources 221 (2013) 97–107.
[54] R.A. de Souza, J. Zehnpfenning, M. Martin, J. Maier, Solid State Ionics 176 (2005) 1465–1471.
[55] W. Nernst, Z. Phys. Chem. 2 (1888) 613.
[56] W. Nernst, Z. Phys. Chem. 4 (1889) 129.
[57] M. Planck, Ann. Phys. Chem. 39 (1890) 161.
[58] M. Planck, Ann. Phys. Chem. 40 (1890) 561.
[59] C.H. Hamann, W. Vielstich, Elektrochemie, 4th ed., Wiley-VCH, Weinheim, (2005).
[60] I. Rubinstein, B. Zaltzman, Advances in Colloid and Interface Science 159 (2010) 117–129.
[61] C. Schmeiser, A. Unterreiter, R. Weiss, Mathematical Models & Methods in Applied Sciences 3 (1993) 125–144.
[62] F. Assad, K. Banoo, M. Lundstrom, Solid-State Electronics 42 (1998) 283–295.
[63] W. Nonner, B. Eisenberg, Journal of Molecular Liquids 87 (2000) 149–162.
[64] H. Cohen, J.W. Cooley, Biophysical Journal 5 (1965) 145–162.
[65] T.R. Brumleve, R.P. Buck, Journal of Electroanalytical Chemistry 90 (1978) 1–31.
[66] T. Sokalski, P. Lingenfelter, A. Lewenstam, Journal of Physical Chemistry B 107 (2003) 2443–2452.
[67] M.Z. Bazant, K. Thornton, A. Ajdari, Physical Review E 70 (2004) 21506.
[68] K.O. Ladipo, P. Berg, S.J. Kimmerle, A. Novruzi, Journal of Chemical Physics 134 (2011).
[69] D. Constantin, Z.S. Siwy, Physical Review E 76 (2007).
[70] T. Wallmersperger, B. Akle, D. Leo, B. Kroplin, Composites Science and Technology 68 (2008) 1173–1180.
[71] R.A. de Souza, M. Martin, Physical Chemistry Chemical Physics 10 (2008) 2356–2367.
[72] M. Landstorfer, T. Jacob, Chemical Society Reviews 42 (2013) 3234–3252.
[73] W. Dyrka, A.T. Augousti, M. Kotulska, Journal of Computational Chemistry 29 (2008) 1876–1888.
[74] G.W. Arnold, Journal of Non-Crystalline Solids 179 (1994) 288–299.
[75] N.Q. Lam, G.K. Leaf, Journal of Materials Research 1 (1986) 251–267.
[76] J. Jagielski, G. Gawlik, A. Zalar, M. Mozetic, Informacije midem - Journal of microelectronics electronic components and materials 29 (1999) 61–67.
[77] G. Borchardt, S. Scherrer, S. Weber, Fresenius Zeitschrift fur Analytische Chemie 329 (1987) 129–132.
DOI: 10.1007/bf00469123
[78] R.T. Short, J.M. McMahon, W.M. Holland, P.J. Todd, Journal of the American Society for Mass Spectrometry 5 (1994) 37–43.
[79] R. Gibbons, M.G. Dowsett, J. Kelly, P. Blenkinsopp, R. Hill, D. Richards, N. Loibl, Applied Surface Science 203 (2003) 343–347.
[80] H. Jain, H.L. Downing, N.L. Peterson, Journal of Non-Crystalline Solids 64 (1984) 335–349.
[81] A.H. Verhoef, H.W. den Hartog, Journal of Non-Crystalline Solids 182 (1995) 221–234.
[82] U. Schoo, C. Cramer, H. Mehrer, Solid State Ionics 138 (2000) 105–114.
[83] A.W. Imre, S.V. Divinski, S. Voss, F. Berkemeier, H. Mehrer, Journal of Non-Crystalline Solids 352 (2006) 783–788.
[84] G. Berger, R. Gildenhaar, U. Ploska, Biomaterials 16 (1995) 1241–1248.
[85] T. Kasuga, M. Sawada, M. Nogami, Y. Abe, Biomaterials 20 (1999) 1415–1420.
[86] I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles, Biomaterials 25 (2004) 491–499.
[87] L. Hench, J. Wilson, Science 226 (1984) 630–636.
[88] J. Martin, D. Budina, J. Zakel, M. Schäfer, K. -M. Weitzel, Proceedings of the IEEE International Conference on Solid Dielectrics, Bologna (2013) 1095–1098.
[89] W. YAO, S.W. Martin, Solid State Ionics 178 (2008) 1777–1784.
[90] K. Otto, M. Milberg, Journal of the American Ceramic Society 51 (1968) 326–329.
[91] F.A. Fusco, H.L. Tuller, D.P. Button, Materials Science and Engineering: B 13 (1992) 157–164.
[92] D.R. Lide, Handbook of Chemistry and Physics, CRC Press, (2004).
[93] A. Bunde, M.D. Ingram, P. Maass, Journal of Non-Crystalline Solids 172 (1994) 1222–1236.
[94] A. Pradel, M. Ribes, Journal of Non-Crystalline Solids 172-174 (1994) 1315–1323.
[95] R.A. de Souza, M. Martin, phys. stat. sol. (c) 4 (2007) 1785–1801.
[96] P.R. Boudewijn, H.J. Werner, in: A. Benninghoven (Ed. ), Secondary ion mass spectrometry: SIMS V proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985, Springer-Verlag, Berlin, New York, (1986).
[97] D. Budina, J. Zakel, J. Martin, P.V. Menezes, M. Schäfer, K. -M. Weitzel, Zeitschrift für Physikalische Chemie 228 (2014) 609–627.
[98] S. Carregal-Romero, P. Rinklin, S. Schulze, M. Schäfer, A. Ott, D. Hühn, X. Yu, B. Wolfrum, K. -M. Weitzel, W.J. Parak, Macromolecular Rapid Communications 34 (2013) 1820–1826.
[99] J. Zakel, P.V. Menezes, M. Schäfer, K. -M. Weitzel, Solid State Ionics 242 (2013) 20–25.
[100] D.G. Ashworth, R. Oven, M.C. Page, Journal of Physics D-Applied Physics 28 (1995) 657–664.
[101] J. Fleig, Physical Chemistry Chemical Physics 11 (2009) 3144–3151.
[102] J. Martin, S. Mehrwald, M. Schäfer, T. Kramer, C. Jooss, K. -M. Weitzel, Electrochimica Acta 191 (2016) 616-623.
[103] S. Schulze, J. Zakel, M. Schäfer, K. -M. Weitzel, IEEE-Transactions of Dielectrics and Electrical Insulation 19 (2012) 1167–1174.
[104] J.G. Kirkwood, J. Chem. Phys. 2 (1934) 767.
[105] M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Physical Review Letters 106 (2011).
[106] M.S. Kilic, M.Z. Bazant, A. Ajdari, Physical Review E 75 (2007) 21502.
[107] M.S. Kilic, M.Z. Bazant, A. Ajdari, Physical Review E 75 (2007) 21503.
[108] M. Schäfer, K. -M. Weitzel, Solid State Ionics 282 (2015) 70–75.
[109] E. Samson, J. Marchand, Journal of colloid and interface science 215 (1999) 1–8.
[110] J. Maier, Zeitschrift für Physikalische Chemie 217 (2003) 415–436.
[111] J. Maier, Physical Chemistry Chemical Physics 11 (2009) 3011–3022.
[112] K. Compaan, Y. Haven, Transactions of the Faraday Society 52 (1956) 786–801.
[113] Manning Jr., Physical Review 116 (1959) 819–827.
[114] G.E. Murch, Solid State Ionics 7 (1982) 177–198.
[115] E. Bychkov, D.L. Price, A. Lapp, Journal of Non-Crystalline Solids 293 (2001) 211–219.
[116] R.J. Charles, Journal of the American Ceramic Society 48 (1965) 432.
[117] D.E. Day, Journal of Non-Crystalline Solids 21 (1976) 343–372.
[118] A. Bunde, M.D. Ingram, P. Maass, K.L. NgaiI, Journal of Physics A - Mathematical and General 24 (1991) L881-L886.
[119] M.D. Ingram, Glastechnische Berichte-Glass Science and Technology 67 (1994) 151–155.
[120] M.D. Ingram, P. Maass, A. Bunde, Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 95 (1991) 1002–1006.
[121] C. Cramer, Y. Gao, S. Brunklaus, E. Ratai, Zeitschrift für Physikalische Chemie 218 (2004) 1413–1428.
[122] E.M.T. Njiokep, H. Mehrer, Solid State Ionics 177 (2006) 2839–2844.
[123] A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Journal of Physical Chemistry C 115 (2011) 23784–23789.
[124] A.W. Imre, A.A. Voss, H. Mehrer, Journal of Non-Crystalline Solids 333 (2004) 231–239.
[125] P. Maass, R. Peibst, Journal of Non-Crystalline Solids 352 (2006) 5178–5187.
[126] H. Mehrer, Zeitschrift für Physikalische Chemie 223 (2009) 1143–1160.