Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses

Article Preview

Abstract:

In this Chapter we review knowledge about diffusion and cation conduction in oxide glasses. We first remind the reader in Section 1 of major aspects of the glassy state and recall in Section 2 the more common glass families. The diffusive motion in ion-conducting oxide glasses can be studied by several techniques – measurements of radiotracer diffusion, studies of the ionic conductivity by impedance spectroscopy, viscosity studies and pressure dependent studies of tracer diffusion and ion conduction. These methods are briefly reviewed in Section 3. Radiotracer diffusion is element-specific, whereas ionic conduction is not. A comparison of both types of experiments can throw considerable light on the question which type of ions are carriers of ionic conduction. For ionic conductors Haven ratios can be obtained from the tracer diffusivity and the ionic conductivity for those ions which dominate the conductivity.In the following sections we review the diffusive motion of cations in soda-lime silicate glass and in several alkali-oxide glasses based mainly on results from our laboratory published in detail elsewhere, but we also take into account literature data.Section 4 is devoted to two soda-lime silicate glasses, materials which are commonly used for window glass and glass containers. A comparison between ionic conductivity and tracer diffusion of Na and Ca isotopes, using the Nernst-Einstein relation to deduce charge diffusivities, reveals that sodium ions are the carriers of ionic conduction in soda-lime glasses. A comparison with viscosity data on the basis of the Stokes-Einstein relation shows that the SiO2 network is many orders of magnitude less mobile than the relatively fast diffusing modifier cations Na. The Ca ions are less mobile than the Na ions but nevertheless Ca is considerably more mobile than the network.Section 5 summarizes results of ion conduction and tracer diffusion for single Na and single Rb borate glasses. Tracer diffusion and ionic conduction have been studied in single alkali-borate glasses as functions of temperature and pressure. The smaller ion is the faster diffusing species in its own glass. This is a common feature of all alkali oxide glasses. The Haven ratio of Na in Na borate glass is temperature independent whereas the Haven ratio of Rb diffusion in Rb borate glass decreases with decreasing temperature.Section 6 reviews major facts of alkali-oxide glasses with two different alkali ions. Such glasses reveal the so-called mixed-alkali effect. Its major feature is a deep minimum of the conductivity near some middle composition for the ratio of the two alkali ions. Tracer diffusion shows a crossover of the two tracer diffusivities as functions of the relative alkali content near the conductivity minimum. The values of the tracer diffusivities also reveal in which composition range which ions dominate ionic conduction. Tracer diffusion is faster for those alkali ions which dominate the composition of the mixed glass.Section 7 considers the pressure dependence of tracer diffusion and ionic conduction. Activation volumes of tracer diffusion and of charge diffusion are reviewed. By comparison of tracer and charge diffusion the so-called Haven ratios are obtained as functions of temperature, pressure and composition. The Haven ratio of Rb in Rb borate glass decreases with temperature and pressure whereas that of Na in Na borate glass is almost constant.Section 8 summarizes additional common features of alkali-oxide glasses. Activation enthalpies of charge diffusion decrease with decreasing average ion-ion distance. The Haven ratio is unity for large ion-ion distances and decreases with increasing alkali content and hence with decreasing ion-ion distance.Conclusions about the mechanism of diffusion are discussed in Section 9. The Haven ratio near unity at low alkali concentrations can be attributed to interstitial-like diffusion similar to interstitial diffusion in crystals. At higher alkali contents collective, chain-like motions of several ions prevail and lead to a decrease of the Haven ratio. The tracer diffusivities have a pressure dependence which is stronger than that of ionic conductivity. This entails a pressure-dependent Haven ratio, which can be attributed to an increasing degree of collectivity of the ionic jump process with increasing pressure. Monte Carlo simulations showed that the number of ions which participate in collective jump events increases with increasing ion content – i.e. with decreasing average ion-ion distance. For the highest alkali contents up to four ions can be involved in collective motion. Common aspects of the motion process of ions in glasses and of atoms in glassy metals are pointed out. Diffusion in glassy metals also occurs by collective motion of several atoms.Section 10 summarizes the major features of ionic conduction and tracer diffusion and its temperature and pressure dependence of oxide glasses.

You might also be interested in these eBooks

Info:

[1] H. Mehrer, Diffusion in Solids – Fundamentals, Methods. Materials, Diffusion-controlled Processes, Textbook, Springer, (2007).

Google Scholar

[2] W.J. Zachariasen, J. Amer, Ceram. Soc. 54, 3841 (1932).

Google Scholar

[3] B.E. Warren, Z. Kristallogr. Mineralog. Petrogr. 80, 349 (1933).

Google Scholar

[4] H. Mehrer, Diffusion in Glassy Metals, in: Diffusion Foundations 1, 125 – 151 (2014), Trans Tech Publications, Switzerland.

DOI: 10.4028/www.scientific.net/df.1.125

Google Scholar

[5] E.M. Tanguep-Nijokep, H Mehrer, Tracer diffusion and ionic conduction in standard silica glasses, Defect and Diffusion Forum 237-240, 282-290 (2005).

DOI: 10.4028/www.scientific.net/ddf.237-240.282

Google Scholar

[6] S. Summerfield, Philos. Mag. B 52, 9 (1985).

Google Scholar

[7] D. Uhlmann, N. Kreidl, Viscous flow and relaxation, in: Glass Science and Technology, D. Uhlmann, N. Kreidl (Eds. ), Academic Press, New York, (1985).

Google Scholar

[8] H. Mehrer, Diffusion in solids under pressure, Defect and Diffusion Forum 309-310, 91-112 (2011).

DOI: 10.4028/www.scientific.net/ddf.309-310.91

Google Scholar

[9] D.N. Yoon, D. Lararus, Phys. Rev. B 5, 4935 (1972).

Google Scholar

[10] B.E. Mellander, Phys. Rev. B 26, 5836 (1982).

Google Scholar

[11] R. Radzikowski, J.T. Kummer, J. Electrochem. Soc. 118, 714 (1971).

Google Scholar

[12] W. Vogel, Glass Chemistry, Springer-Verlag, (1985).

Google Scholar

[13] J.E. Shelby, Introduction to Glass Science and Technology, The Royal Society of Chemistry, Cambridge, RSC paperbacks (1997).

Google Scholar

[14] R.H. Doremus, Glass Science, John Wiley and Sons, New York, (1994).

Google Scholar

[15] A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, Inc., (1994).

Google Scholar

[16] H. Mehrer, A.W. Imre, E.M. Tanguep-Njiokep, Diffusion and ionic conduction in oxide glasses, J. of Phys.: Conf. Ser. 106, 012001 (2008).

DOI: 10.1088/1742-6596/106/1/012001

Google Scholar

[17] E.M. Tanguep-Njiokep, H. Mehrer, Tracer diffusion and ionic conduction in standard silica glasses, Defect and Diffusion Forum 237 - 240, 282 - 290 (2005).

DOI: 10.4028/www.scientific.net/ddf.237-240.282

Google Scholar

[18] E.M. Tanguep-Nijokep, H. Mehrer, A.W. Imre, Tracer diffusion of 22Na and 45Ca, ionic conduction and viscosity of two satandard soda-lime glasses and their undercooled melts, J. Non-Cryst. Solids 354, 355 – 359 (2008).

DOI: 10.1016/j.jnoncrysol.2007.07.045

Google Scholar

[19] E. M. Tanguep Njiokep, H. Mehrer, Diffusion of 22Na and 45Ca and ionic conduction in two standard soda-lime glasses, Solid State Ionics, 177, 2839 - 2844 (2006).

DOI: 10.1016/j.ssi.2005.12.029

Google Scholar

[20] K. Funke, R.D. Banhatti, C. Cramer, D. Wilmer, in: Diffusion in Condensed Matter – Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, (2005).

Google Scholar

[21] H. Frischat, Glastechn. Berichte 44, 93 (1971).

Google Scholar

[22] R. Terai, T. Kitaoka, T. Ueno, Yogyo Kyokaishi 77, 88 (1969).

Google Scholar

[23] E.I. Williams, R.W. Heckman, Phys. Chem. Glasses 5, 111 (1964).

Google Scholar

[24] F. Natrup, Dissertation, Universität Münster, (2005).

Google Scholar

[25] A.W. Imre, F. Berkemeier, H. Mehrer, Y. Gao, C. Cramer, M.D. Ingram, Transition from a single-ion to a collective mechanism in alkali borate glasses, J. Non-Cryst. Solids 354, 328 – 332 (2008).

DOI: 10.1016/j.jnoncrysol.2007.07.087

Google Scholar

[26] A.W. Imre, H. Staesche, S. Voss, M.D. Ingram, K. Funke, H. Mehrer, Pressure-dependent diffusion coefficients and Haven ratios in cation-conducting glasses, J. Phys. Chem. B 111, 5301 -5307 (2007).

DOI: 10.1021/jp070478q

Google Scholar

[27] A.W. Imre, S. Voss, F. Berkemeier, H. Mehrer, I. Konidakis, M.D. Ingram, Pressure dependence of the ionic conductivity of Na- and Na-Rb borate glasses, Solid State Ionics 177, 963-969 (2006).

DOI: 10.1016/j.ssi.2006.03.009

Google Scholar

[28] A.W. Imre, S.V. Divinski, S. Voss, F. Berkemeier, H. Mehrer, A revised view on the mixed-alkali effect in alkali borate glasses, J. Non-Cryst. Solids 352, 783-788 (2006).

DOI: 10.1016/j.jnoncrysol.2006.02.008

Google Scholar

[29] J.D. Epping, H. Eckert, A.W. Imre, H. Mehrer, Structural manifestation of the mixed-alkali effect: NMR studies of sodium-rubidium borate glasses, J. Non-Cryst. Solids 351, 3521 (2005).

DOI: 10.1016/j.jnoncrysol.2005.08.034

Google Scholar

[30] S. Voss, S. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Towards a universal behaviour of ion dynamics in Na- and Rb-oxide glasses, Solid State Ionics 176, 1383-1391 (2005).

DOI: 10.1016/j.ssi.2005.03.007

Google Scholar

[31] F. Berkemeier, S. Voss, A.W. Imre, H. Mehrer, Molar volume, glass-transition temperature, and ionic conduction of Na- and Rb-borate glasses in comparison with mixed Na-Rb borate glasses, J. Non-Cryst. Solids 351, 3816 – 3825 (2005).

DOI: 10.1016/j.jnoncrysol.2005.10.010

Google Scholar

[32] A.W. Imre, S. Voss, H. Mehrer, Tracer diffusion of 22Na and 86Rb and ionic conduction in sodium-rubidium borate glasses: temperature and composition dependence, Defect and Diffusion Forum 237 - 240, 370 - 383 (2005).

DOI: 10.4028/www.scientific.net/ddf.237-240.370

Google Scholar

[33] S. Voss, F. Berkemeier, A.W. Imre, H. Mehrer, Mixed-alkali effect of tracer diffusion and ionic conduction in Na-Rb borate glasses as function of the total alkali content, Z. Phys. Chem. 218, 1353 – 134 (2004).

DOI: 10.1524/zpch.218.12.1353.53833

Google Scholar

[34] C.C. Hunter, M.D. Ingram, Solid State Ionics 14, 31 (1984).

Google Scholar

[35] H. Jain, H.L. Downing, N.L. Peterson, The nixed-alkali effect in lithium-sodium borate glasses, J. Non-Cryst. Solids 64, 335 – 349 (1984).

DOI: 10.1016/0022-3093(84)90187-x

Google Scholar

[36] R. Terai, The mixed alkali effect in the Na2O-Cs2O-SiO4 glasses, J. Non-Cryst. Solids 5, 121 - 135 (1971).

DOI: 10.1016/0022-3093(71)90051-2

Google Scholar

[37] J.W. Fleming, D.E. Day, Relation of alkali mobility and mechanical relaxation in mixed-alkali silicate glasses, J. Amer. Ceram Soc. 55, 186-192 (1972).

DOI: 10.1111/j.1151-2916.1972.tb11255.x

Google Scholar

[38] A.W. Imre, H. Staesche, S. Voss, M.D. Ingram, K. Funke, H. Mehrer, Pressure-dependent diffusion coefficients and Haven ratios in cation-conducting glasses, J. Phys. Chem. B 111, 5301 -5307 (2007).

DOI: 10.1021/jp070478q

Google Scholar

[39] H. Mehrer, Diffusion and ionic conduction in soda-lime silicate glasses and in alkali borate glasses, Defect and Diffusion Forum 312-315, 1184 - 1197 (2011).

DOI: 10.4028/www.scientific.net/ddf.312-315.1184

Google Scholar

[40] J.E. Kelly III, J.F. Condaro, M. Tomozawa, J. Non-Cryst. Solids 41, 47 (1980).

Google Scholar

[41] R. Kirchheim, J. Non-Cryst. Solids 272, 85 (2006).

Google Scholar

[42] G.I. McVay, D.E. Day, Diffusion and internal friction in Na-Rb silicate glasses, J. Amer. Ceram Soc. 53, 508-513 (1970).

DOI: 10.1111/j.1151-2916.1970.tb16002.x

Google Scholar

[43] A.W. Imre, S. Voss, H. Mehrer, Ionic transport in 0. 2[XNa2O(1-X)Rb2O]0. 8B2O3 mixed-alkali glasses, Phys. Chem. Chem. Phys. 4, 3219 – 3224 (2002).

DOI: 10.1039/b110980b

Google Scholar

[44] M.P. Dariel, Scripta Metall. 8, 869 (1974).

Google Scholar

[45] S.K. Sharma, F. Faupel, J. Mater. Res. 14, 3200 (1999).

Google Scholar

[46] W. Meyer, H. Neldel, Z. Techn. Phys. 12, 588 (1937).

Google Scholar

[47] F. Faupel, W. Frank, M.P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S.K. Sharma, H. Teichler, Diffusion in metallic glasses and supercooled melts, Rev. Mod. Phys. 75, 237 – 280 (2003).

DOI: 10.1103/revmodphys.75.237

Google Scholar

[48] A.W. Imre, St. Voss, H. Mehrer, Ionic transport in 0. 2[XNa2O(1-X)Rb2O]0. 8B2O3 mixed-alkali glasses, Phys. Chem. Chem. Phys. 4, 3219-3224 (2002); see also.

DOI: 10.1039/b110980b

Google Scholar

[49] J.O. Isard, J. Non-Cryst. Sol. 1, 235 (1969).

Google Scholar

[50] E. Day, J. Non-Cryst. Sol. 12, 343 (1969).

Google Scholar

[51] M.D. Ingram, Phys. Chem. of Glasses 28, 215 /1987).

Google Scholar

[52] J.R. Hendriksen, P.J. Bray, Phys. Chem. Glasses 14, 43 and 107 (1972).

Google Scholar

[53] G. Tomandl, H. Schaeffer, J. Non-Cryst. Sol. 73, 179 (1985).

Google Scholar

[54] W.C. LaCourse, J. Non-Cryst. Sol. 95 - 96, 905 (1987).

Google Scholar

[55] C.T. Moynihan, A.V. Lesikar, J. Amer. Ceram. Soc. 64, 40 (1981).

Google Scholar

[56] M. Tomozawa, V. McGahay, J. Non-Cryst. Sol. 128, 48 (1991).

Google Scholar

[57] A. Bunde, M.D. Ingram, P. Maass, J. Non-Cryst. Sol. 131 - 133, 1109 (1991).

Google Scholar

[58] R . Kirchheim, J. Non-Cryst. Solids 272, 84 (2000).

Google Scholar

[59] W. Dieterich, P. Maass, Chem. Physics 284 439 (2002).

Google Scholar

[60] A. Bunde, W. Dieterich, P. Maass, M. Meyer, Ch. 20, in: Diffusion in Condensed Matter - Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer, (2005).

DOI: 10.1007/3-540-30970-5_20

Google Scholar

[61] P.W.S.K. Banderanayake, C.T. Imrie, M.D. Ingram, Phys. Chem. Chem. Phys. 4, 2309 (2002).

Google Scholar

[62] J.N. Mundy, G.L. Jin, Solid State Ionics 21, 305 (1986).

Google Scholar

[63] J.N. Mundy, G.L. Jin, Solid State Ionics 24, 263 (1987).

Google Scholar

[64] J.N. Mundy, G.L. Jin, Solid State Ionics 25, 71 (1987).

Google Scholar

[65] G.L. Jin, Y. Liu, J.N. Mundy, J. Mater. Sci. 22, 3672 (1987).

Google Scholar

[66] J.N. Mundy, G.L. Jin, Solid State Ionics 66, 69 (1993).

Google Scholar

[67] J.E. Kelly, J.F. Cordaro, M. Tomozawa, J. Non-Cryst. Solids 41, 47 (1980).

Google Scholar

[68] K. Funke, R.D. Banhatti, C. Cramer, D. Wilmer, in: Diffusion in Condensed Matter – Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, (2005).

Google Scholar

[69] J. I. Frenkel, Z. Physik 35, 652 (1926).

Google Scholar

[70] C. Wagner, W. Schottky, Z. Phys. Chem. B 11, 163 (1930).

Google Scholar

[71] G. Tammann, Kristallisieren und Schmelzen, Barth, Leipzig, 1903; Aggregatzustände, 2nd edn.: Der Glaszustand, Voss, Leipzig, (1933).

Google Scholar

[72] G.E. Murch, Diffusion Kinetics in Materials, Ch. 3 in: Phase Transformations in Materials, G. Kostorz (Ed. ), Wiley – Vch Verlag GmbH, Weilheim, Germany, (2001).

Google Scholar

[73] S. Voss, S. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Towards a universal behaviour of ion dynamics in Na- and Rb-oxide glasses, Solid State Ionics 176, 1383-1391 (2005).

DOI: 10.1016/j.ssi.2005.03.007

Google Scholar

[74] H. Teichler, Atomic dynamics in computer-simulated amorphous Ni1-xZrx alloys, Defect and Diffusion. Forum 143-147, 717 - 723 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.717

Google Scholar

[75] H. Teichler, Phys. Rev. B 59, 8473 (1999).

Google Scholar

[76] M. Kluge, H.R. Schober, Simulation of diffusion in amorphous solids and liquids, Defect and Diffusion Forum 194-199, 849 (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.849

Google Scholar

[77] W. Götze, A. Sjölander, Rep. Progr. Physics 55, 241 (1992).

Google Scholar

[78] H. Teichler, J. Non-Cryst. Solids 293, 339 (2001).

Google Scholar

[79] M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987).

Google Scholar

[80] C. Cramer, S. Brückner, Y. Gao, K. Funke, Phys. Chem. Chem. Phys. 4, 3214 (2002).

Google Scholar

[81] C.C. Hunter, M.D. Ingram, Solid State Ionics 14, 31 (1984).

Google Scholar

[82] G.E. Murch, The Haven ratio in fast ionic conductors, Solid State Ionics 7, 177 – 198 (1982).

DOI: 10.1016/0167-2738(82)90050-9

Google Scholar