[1]
H. Mehrer, Diffusion in Solids – Fundamentals, Methods. Materials, Diffusion-controlled Processes, Textbook, Springer, (2007).
Google Scholar
[2]
W.J. Zachariasen, J. Amer, Ceram. Soc. 54, 3841 (1932).
Google Scholar
[3]
B.E. Warren, Z. Kristallogr. Mineralog. Petrogr. 80, 349 (1933).
Google Scholar
[4]
H. Mehrer, Diffusion in Glassy Metals, in: Diffusion Foundations 1, 125 – 151 (2014), Trans Tech Publications, Switzerland.
DOI: 10.4028/www.scientific.net/df.1.125
Google Scholar
[5]
E.M. Tanguep-Nijokep, H Mehrer, Tracer diffusion and ionic conduction in standard silica glasses, Defect and Diffusion Forum 237-240, 282-290 (2005).
DOI: 10.4028/www.scientific.net/ddf.237-240.282
Google Scholar
[6]
S. Summerfield, Philos. Mag. B 52, 9 (1985).
Google Scholar
[7]
D. Uhlmann, N. Kreidl, Viscous flow and relaxation, in: Glass Science and Technology, D. Uhlmann, N. Kreidl (Eds. ), Academic Press, New York, (1985).
Google Scholar
[8]
H. Mehrer, Diffusion in solids under pressure, Defect and Diffusion Forum 309-310, 91-112 (2011).
DOI: 10.4028/www.scientific.net/ddf.309-310.91
Google Scholar
[9]
D.N. Yoon, D. Lararus, Phys. Rev. B 5, 4935 (1972).
Google Scholar
[10]
B.E. Mellander, Phys. Rev. B 26, 5836 (1982).
Google Scholar
[11]
R. Radzikowski, J.T. Kummer, J. Electrochem. Soc. 118, 714 (1971).
Google Scholar
[12]
W. Vogel, Glass Chemistry, Springer-Verlag, (1985).
Google Scholar
[13]
J.E. Shelby, Introduction to Glass Science and Technology, The Royal Society of Chemistry, Cambridge, RSC paperbacks (1997).
Google Scholar
[14]
R.H. Doremus, Glass Science, John Wiley and Sons, New York, (1994).
Google Scholar
[15]
A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, Inc., (1994).
Google Scholar
[16]
H. Mehrer, A.W. Imre, E.M. Tanguep-Njiokep, Diffusion and ionic conduction in oxide glasses, J. of Phys.: Conf. Ser. 106, 012001 (2008).
DOI: 10.1088/1742-6596/106/1/012001
Google Scholar
[17]
E.M. Tanguep-Njiokep, H. Mehrer, Tracer diffusion and ionic conduction in standard silica glasses, Defect and Diffusion Forum 237 - 240, 282 - 290 (2005).
DOI: 10.4028/www.scientific.net/ddf.237-240.282
Google Scholar
[18]
E.M. Tanguep-Nijokep, H. Mehrer, A.W. Imre, Tracer diffusion of 22Na and 45Ca, ionic conduction and viscosity of two satandard soda-lime glasses and their undercooled melts, J. Non-Cryst. Solids 354, 355 – 359 (2008).
DOI: 10.1016/j.jnoncrysol.2007.07.045
Google Scholar
[19]
E. M. Tanguep Njiokep, H. Mehrer, Diffusion of 22Na and 45Ca and ionic conduction in two standard soda-lime glasses, Solid State Ionics, 177, 2839 - 2844 (2006).
DOI: 10.1016/j.ssi.2005.12.029
Google Scholar
[20]
K. Funke, R.D. Banhatti, C. Cramer, D. Wilmer, in: Diffusion in Condensed Matter – Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, (2005).
Google Scholar
[21]
H. Frischat, Glastechn. Berichte 44, 93 (1971).
Google Scholar
[22]
R. Terai, T. Kitaoka, T. Ueno, Yogyo Kyokaishi 77, 88 (1969).
Google Scholar
[23]
E.I. Williams, R.W. Heckman, Phys. Chem. Glasses 5, 111 (1964).
Google Scholar
[24]
F. Natrup, Dissertation, Universität Münster, (2005).
Google Scholar
[25]
A.W. Imre, F. Berkemeier, H. Mehrer, Y. Gao, C. Cramer, M.D. Ingram, Transition from a single-ion to a collective mechanism in alkali borate glasses, J. Non-Cryst. Solids 354, 328 – 332 (2008).
DOI: 10.1016/j.jnoncrysol.2007.07.087
Google Scholar
[26]
A.W. Imre, H. Staesche, S. Voss, M.D. Ingram, K. Funke, H. Mehrer, Pressure-dependent diffusion coefficients and Haven ratios in cation-conducting glasses, J. Phys. Chem. B 111, 5301 -5307 (2007).
DOI: 10.1021/jp070478q
Google Scholar
[27]
A.W. Imre, S. Voss, F. Berkemeier, H. Mehrer, I. Konidakis, M.D. Ingram, Pressure dependence of the ionic conductivity of Na- and Na-Rb borate glasses, Solid State Ionics 177, 963-969 (2006).
DOI: 10.1016/j.ssi.2006.03.009
Google Scholar
[28]
A.W. Imre, S.V. Divinski, S. Voss, F. Berkemeier, H. Mehrer, A revised view on the mixed-alkali effect in alkali borate glasses, J. Non-Cryst. Solids 352, 783-788 (2006).
DOI: 10.1016/j.jnoncrysol.2006.02.008
Google Scholar
[29]
J.D. Epping, H. Eckert, A.W. Imre, H. Mehrer, Structural manifestation of the mixed-alkali effect: NMR studies of sodium-rubidium borate glasses, J. Non-Cryst. Solids 351, 3521 (2005).
DOI: 10.1016/j.jnoncrysol.2005.08.034
Google Scholar
[30]
S. Voss, S. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Towards a universal behaviour of ion dynamics in Na- and Rb-oxide glasses, Solid State Ionics 176, 1383-1391 (2005).
DOI: 10.1016/j.ssi.2005.03.007
Google Scholar
[31]
F. Berkemeier, S. Voss, A.W. Imre, H. Mehrer, Molar volume, glass-transition temperature, and ionic conduction of Na- and Rb-borate glasses in comparison with mixed Na-Rb borate glasses, J. Non-Cryst. Solids 351, 3816 – 3825 (2005).
DOI: 10.1016/j.jnoncrysol.2005.10.010
Google Scholar
[32]
A.W. Imre, S. Voss, H. Mehrer, Tracer diffusion of 22Na and 86Rb and ionic conduction in sodium-rubidium borate glasses: temperature and composition dependence, Defect and Diffusion Forum 237 - 240, 370 - 383 (2005).
DOI: 10.4028/www.scientific.net/ddf.237-240.370
Google Scholar
[33]
S. Voss, F. Berkemeier, A.W. Imre, H. Mehrer, Mixed-alkali effect of tracer diffusion and ionic conduction in Na-Rb borate glasses as function of the total alkali content, Z. Phys. Chem. 218, 1353 – 134 (2004).
DOI: 10.1524/zpch.218.12.1353.53833
Google Scholar
[34]
C.C. Hunter, M.D. Ingram, Solid State Ionics 14, 31 (1984).
Google Scholar
[35]
H. Jain, H.L. Downing, N.L. Peterson, The nixed-alkali effect in lithium-sodium borate glasses, J. Non-Cryst. Solids 64, 335 – 349 (1984).
DOI: 10.1016/0022-3093(84)90187-x
Google Scholar
[36]
R. Terai, The mixed alkali effect in the Na2O-Cs2O-SiO4 glasses, J. Non-Cryst. Solids 5, 121 - 135 (1971).
DOI: 10.1016/0022-3093(71)90051-2
Google Scholar
[37]
J.W. Fleming, D.E. Day, Relation of alkali mobility and mechanical relaxation in mixed-alkali silicate glasses, J. Amer. Ceram Soc. 55, 186-192 (1972).
DOI: 10.1111/j.1151-2916.1972.tb11255.x
Google Scholar
[38]
A.W. Imre, H. Staesche, S. Voss, M.D. Ingram, K. Funke, H. Mehrer, Pressure-dependent diffusion coefficients and Haven ratios in cation-conducting glasses, J. Phys. Chem. B 111, 5301 -5307 (2007).
DOI: 10.1021/jp070478q
Google Scholar
[39]
H. Mehrer, Diffusion and ionic conduction in soda-lime silicate glasses and in alkali borate glasses, Defect and Diffusion Forum 312-315, 1184 - 1197 (2011).
DOI: 10.4028/www.scientific.net/ddf.312-315.1184
Google Scholar
[40]
J.E. Kelly III, J.F. Condaro, M. Tomozawa, J. Non-Cryst. Solids 41, 47 (1980).
Google Scholar
[41]
R. Kirchheim, J. Non-Cryst. Solids 272, 85 (2006).
Google Scholar
[42]
G.I. McVay, D.E. Day, Diffusion and internal friction in Na-Rb silicate glasses, J. Amer. Ceram Soc. 53, 508-513 (1970).
DOI: 10.1111/j.1151-2916.1970.tb16002.x
Google Scholar
[43]
A.W. Imre, S. Voss, H. Mehrer, Ionic transport in 0. 2[XNa2O(1-X)Rb2O]0. 8B2O3 mixed-alkali glasses, Phys. Chem. Chem. Phys. 4, 3219 – 3224 (2002).
DOI: 10.1039/b110980b
Google Scholar
[44]
M.P. Dariel, Scripta Metall. 8, 869 (1974).
Google Scholar
[45]
S.K. Sharma, F. Faupel, J. Mater. Res. 14, 3200 (1999).
Google Scholar
[46]
W. Meyer, H. Neldel, Z. Techn. Phys. 12, 588 (1937).
Google Scholar
[47]
F. Faupel, W. Frank, M.P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S.K. Sharma, H. Teichler, Diffusion in metallic glasses and supercooled melts, Rev. Mod. Phys. 75, 237 – 280 (2003).
DOI: 10.1103/revmodphys.75.237
Google Scholar
[48]
A.W. Imre, St. Voss, H. Mehrer, Ionic transport in 0. 2[XNa2O(1-X)Rb2O]0. 8B2O3 mixed-alkali glasses, Phys. Chem. Chem. Phys. 4, 3219-3224 (2002); see also.
DOI: 10.1039/b110980b
Google Scholar
[49]
J.O. Isard, J. Non-Cryst. Sol. 1, 235 (1969).
Google Scholar
[50]
E. Day, J. Non-Cryst. Sol. 12, 343 (1969).
Google Scholar
[51]
M.D. Ingram, Phys. Chem. of Glasses 28, 215 /1987).
Google Scholar
[52]
J.R. Hendriksen, P.J. Bray, Phys. Chem. Glasses 14, 43 and 107 (1972).
Google Scholar
[53]
G. Tomandl, H. Schaeffer, J. Non-Cryst. Sol. 73, 179 (1985).
Google Scholar
[54]
W.C. LaCourse, J. Non-Cryst. Sol. 95 - 96, 905 (1987).
Google Scholar
[55]
C.T. Moynihan, A.V. Lesikar, J. Amer. Ceram. Soc. 64, 40 (1981).
Google Scholar
[56]
M. Tomozawa, V. McGahay, J. Non-Cryst. Sol. 128, 48 (1991).
Google Scholar
[57]
A. Bunde, M.D. Ingram, P. Maass, J. Non-Cryst. Sol. 131 - 133, 1109 (1991).
Google Scholar
[58]
R . Kirchheim, J. Non-Cryst. Solids 272, 84 (2000).
Google Scholar
[59]
W. Dieterich, P. Maass, Chem. Physics 284 439 (2002).
Google Scholar
[60]
A. Bunde, W. Dieterich, P. Maass, M. Meyer, Ch. 20, in: Diffusion in Condensed Matter - Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer, (2005).
DOI: 10.1007/3-540-30970-5_20
Google Scholar
[61]
P.W.S.K. Banderanayake, C.T. Imrie, M.D. Ingram, Phys. Chem. Chem. Phys. 4, 2309 (2002).
Google Scholar
[62]
J.N. Mundy, G.L. Jin, Solid State Ionics 21, 305 (1986).
Google Scholar
[63]
J.N. Mundy, G.L. Jin, Solid State Ionics 24, 263 (1987).
Google Scholar
[64]
J.N. Mundy, G.L. Jin, Solid State Ionics 25, 71 (1987).
Google Scholar
[65]
G.L. Jin, Y. Liu, J.N. Mundy, J. Mater. Sci. 22, 3672 (1987).
Google Scholar
[66]
J.N. Mundy, G.L. Jin, Solid State Ionics 66, 69 (1993).
Google Scholar
[67]
J.E. Kelly, J.F. Cordaro, M. Tomozawa, J. Non-Cryst. Solids 41, 47 (1980).
Google Scholar
[68]
K. Funke, R.D. Banhatti, C. Cramer, D. Wilmer, in: Diffusion in Condensed Matter – Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, (2005).
Google Scholar
[69]
J. I. Frenkel, Z. Physik 35, 652 (1926).
Google Scholar
[70]
C. Wagner, W. Schottky, Z. Phys. Chem. B 11, 163 (1930).
Google Scholar
[71]
G. Tammann, Kristallisieren und Schmelzen, Barth, Leipzig, 1903; Aggregatzustände, 2nd edn.: Der Glaszustand, Voss, Leipzig, (1933).
Google Scholar
[72]
G.E. Murch, Diffusion Kinetics in Materials, Ch. 3 in: Phase Transformations in Materials, G. Kostorz (Ed. ), Wiley – Vch Verlag GmbH, Weilheim, Germany, (2001).
Google Scholar
[73]
S. Voss, S. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Towards a universal behaviour of ion dynamics in Na- and Rb-oxide glasses, Solid State Ionics 176, 1383-1391 (2005).
DOI: 10.1016/j.ssi.2005.03.007
Google Scholar
[74]
H. Teichler, Atomic dynamics in computer-simulated amorphous Ni1-xZrx alloys, Defect and Diffusion. Forum 143-147, 717 - 723 (1997).
DOI: 10.4028/www.scientific.net/ddf.143-147.717
Google Scholar
[75]
H. Teichler, Phys. Rev. B 59, 8473 (1999).
Google Scholar
[76]
M. Kluge, H.R. Schober, Simulation of diffusion in amorphous solids and liquids, Defect and Diffusion Forum 194-199, 849 (2001).
DOI: 10.4028/www.scientific.net/ddf.194-199.849
Google Scholar
[77]
W. Götze, A. Sjölander, Rep. Progr. Physics 55, 241 (1992).
Google Scholar
[78]
H. Teichler, J. Non-Cryst. Solids 293, 339 (2001).
Google Scholar
[79]
M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987).
Google Scholar
[80]
C. Cramer, S. Brückner, Y. Gao, K. Funke, Phys. Chem. Chem. Phys. 4, 3214 (2002).
Google Scholar
[81]
C.C. Hunter, M.D. Ingram, Solid State Ionics 14, 31 (1984).
Google Scholar
[82]
G.E. Murch, The Haven ratio in fast ionic conductors, Solid State Ionics 7, 177 – 198 (1982).
DOI: 10.1016/0167-2738(82)90050-9
Google Scholar