[1]
H.M. Kunzel, Simultaneous heat and moisture transport in building components: One- and two-dimensional calculation using simple parameters, PhD Thesis, Fraunhofer IRB Verlag, (1995).
Google Scholar
[2]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Mathematical analysis of the evapourative process of a new technological treatment of rising damp in historic buildings, Build. Environm., 45 (2010) 2414–2420.
DOI: 10.1016/j.buildenv.2010.05.007
Google Scholar
[3]
R. Colombert, L'Humidité des bâtiments anciens; Causes et effets; Diagnostic et remèdes, Editions du Moniteur, Paris, France, (1975).
Google Scholar
[4]
C. Hall, W.D. Hoff, Rising damp: Capillary rise dynamics in walls, Proc. Royal Soc. A: Math., Phys Eng. Sci., 463 (2007) 1871-84.
DOI: 10.1098/rspa.2007.1855
Google Scholar
[5]
C. Hall, W.D. Hoff, Water transport in brick, stone and concrete, Taylor & Francis, London, UK, (2002).
Google Scholar
[6]
C. Hall, W.D. Hoff, M.R. Nixon, Water movement in porous building materials-VI. Evapouration and drying in brick and block materials, Build. Environm., 19 (1984) 13-20.
DOI: 10.1016/0360-1323(84)90009-x
Google Scholar
[7]
C. Hall, Water movement in porous building materials-IV. The initial surface absorption and the sorptivity, Build. Environm., 16 (1981) 201-207.
DOI: 10.1016/0360-1323(81)90014-7
Google Scholar
[8]
C. Hall, Water movement in porous building materials-I. Unsaturated flow theory and its applications, Build. Environm., 12 (1977) 124-132.
Google Scholar
[9]
R.J. Gummerson, C. Hall, W.D. Hoff, Water movement in porous building materials-II. Hydraulic suction and sorptivity of brick and other masonry materials, Build. Environm., 15 (1980) 101-108.
DOI: 10.1016/0360-1323(80)90015-3
Google Scholar
[10]
CSTB, Centre Scientifique et Tecnhique du Batiment, The methods of treatment against rising damp masonry, Technical information note 162, Bruxelles, Belgium, 1985. (in French).
Google Scholar
[11]
F.M. A Henriques, Humidity in Walls – Manifestation Forms, Criteria for Quantification and Repair Solutions Analysis. PhD Thesis, Universidade Técnica de Lisboa – UTL, Lisbon, Portugal, 1983. (in Portuguese).
Google Scholar
[12]
V.P. Freitas, A. S Guimarães, Characterization of a hygro-regulated Wall Base Ventilation System for Treatment of Rising Damp in Historical Buildings, Proc. 2nd Nordic Symp. Building Physics, Copenhagen, Denmark, pp.911-919, (2008).
DOI: 10.1201/9781315158648-16
Google Scholar
[13]
M.I. Torres, V.P. de Freitas, Treatment of rising damp in historical buildings: wall base ventilation, Build. Environm., 42 (2007) 424-435.
DOI: 10.1016/j.buildenv.2005.07.034
Google Scholar
[14]
A. Holm, H.M. Kunzel, Two-dimensional transient heat and moisture simulations of rising damp with WUFI-2D, Proc. 2nd Nordic Symp. Building Physics, Leuven, Belgium, pp.363-3677, (2003).
DOI: 10.1201/9781003078852-52
Google Scholar
[15]
M.I. Torres, V.P. de Freitas, Rising damp in historical buildings - Research in Building Physics, Proc. 2nd Nordic Symp. Building Physics, Leuven, Belgium, pp.369-375, (2003).
DOI: 10.1201/9781003078852-53
Google Scholar
[16]
E.L. Cussler, Diffusion: mass transfer in fluid systems, Second edition, Cambridge University Press, United Kingdom, (1977).
Google Scholar
[17]
J. Crank, The mathematics of diffusion, Second edition, Oxford University Press, United Kingdom, (1975).
Google Scholar
[18]
F.P. Incropera, DP. deWitt, Fundamentals of Heat and Mass Transfer, Third edition, John Wiley and Sons, USA, (2002).
Google Scholar
[19]
J.H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer-Verlag Berlin, Germany, (1996).
Google Scholar
[20]
C.J. Freitas, Policy statement on the control of numerical accuracy. ASME J. Fluids Eng., 115 (1993) 339-340.
Google Scholar
[21]
M.A. Alves, P.J. Oliveira, F.T. Pinho, A convergent and universally bounded interpolation scheme for the treatment of advection, Int. J. Num. Meth. Fluids, 41 (2003) 47-75.
DOI: 10.1002/fld.428
Google Scholar
[22]
P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation-laws, SIAM J. Num. Anal., 21 (1984) 995-1011.
DOI: 10.1137/0721062
Google Scholar
[23]
P.H. Gaskell, A.K.C. Lau, Curvature compensated convective transport: SMART, a new boundedness preserving transport algorithm, Int. J. Num. Meth. Fluids, 8 (1988) 617-641.
DOI: 10.1002/fld.1650080602
Google Scholar
[24]
B.P. Leonard, Simple high-accuracy resolution program for convective modelling of discontinuities, Int. J. Num. Meth. Fluids, 8 (1988): 1291-1318.
DOI: 10.1002/fld.1650081013
Google Scholar
[25]
R.J. Gummerson, C. Hall, W.D. Hoff, Water movement in porous building materials-III. A sorptivity test procedure for chemical injection damp proofing, Build. Environm., 16 (1981) 193-199.
DOI: 10.1016/0360-1323(81)90013-5
Google Scholar
[26]
M.A. Wilson, W.D. Hoff, Water movement in porous building materials-XII. Absorption from a drilled hole with a hemispherical end, Build. Environm., 29 (1994): 537-544.
DOI: 10.1016/0360-1323(94)90013-2
Google Scholar
[27]
L. Hanžič, R. Ilić, Relationship between liquid sorptivity and capillarity in concrete, Cem. Concr. Res., 33 (2003) 1385-1388.
Google Scholar
[28]
B.A. Kimball, R.D. Jackson, R.J. Reginato, F.S. Nakayama, S.B. Idso, Comparison of field-measures and calculated soil-heat fluxes, Soil Sci. Soc. Am. Proc., 40 (1976) 18-32.
DOI: 10.2136/sssaj1976.03615995004000010010x
Google Scholar
[29]
A.L. Kay, H.N. Davies, Calculating potential evapouration from climate model data: A source of uncertainty for hydrological climate change impacts, J. Hydrol., 358 (2008) 221-239.
DOI: 10.1016/j.jhydrol.2008.06.005
Google Scholar
[30]
H.M. Penman, Natural evaporation from open water, bare soil and grass, Proc. Royal Soc. London A, 193 (1948) 120–145.
DOI: 10.1098/rspa.1948.0037
Google Scholar
[31]
J.M.P.Q. Delgado, V.P. de Freitas, A.S. Guimarães C. Ferreira, Controlled Relative Humidity in Crawl Spaces: A New Treatment Methodology, Struct. Surv., 31 (2013) 139-156.
DOI: 10.1108/02630801311317545
Google Scholar
[32]
V.P. Freitas, Moisture transfer in building walls – Analysis of the interface phenomenon, PhD Thesis, Faculdade de Engenharia da Universidade do Porto, Portugal, 1992. (in Portuguese).
Google Scholar
[33]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Numerical Simulation of Rising Damp Phenomenon, Def. Diff. Forum, 326-328 (2012) 48–53.
DOI: 10.4028/www.scientific.net/ddf.326-328.48
Google Scholar
[34]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Characterization of a Hygro-Regulated Wall Base Ventilation System for Treatment of Rising Damp, Def. Diff. Forum, 326-328 (2012) 54–59.
DOI: 10.4028/www.scientific.net/ddf.326-328.54
Google Scholar
[35]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Degradation Control of Walls with Rising Damp Problems: Numerical and Mathematical Analysis of the Evaporative Process, in: V.P. de Freitas, J.M.P.Q. Delgado (Eds. ), Hygrothermal Behaviour, Building Pathology and Durability, Springer-Verlag, Germany, 2012, p.113.
DOI: 10.1007/978-3-642-31158-1_6
Google Scholar
[36]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Treatment of Rising Damp in Historical Buildings, in: J.M.P.Q. Delgado (Eds. ), Heat and Mass Transfer in Porous Media, Springer-Verlag, Germany, 2011, p.1–23.
DOI: 10.1007/978-3-642-21966-5_1
Google Scholar
[37]
M.I. Torres, V.P. de Freitas, The influence of the thickness of the walls and their properties on the treatment of rising damp in historic buildings, Const. Build. Mat., 24 (2010) 1331-1339.
DOI: 10.1016/j.conbuildmat.2010.01.004
Google Scholar
[38]
M. Bomberg, Moisture flow through porous building materials, Report no. 52, Division of Building Technology, Lund Institute of Technology, Sweden, (1974).
DOI: 10.2136/sssaj1975.03615995003900020004x
Google Scholar
[39]
N.M.M. Ramos, A. Kalagasidis, V.P. de Freitas J.M.P.Q. Delgado, Numerical Simulation of Transient Moisture Transport for Hygroscopic Inertia Assessment, J. Porous Med., 15 (2012) 793–804.
DOI: 10.1615/jpormedia.v15.i8.80
Google Scholar
[40]
T. Kalamees, J. Vinha, J. Kurnitski, Indoor humidity loads and moisture production in lightweight timber-frame detached houses, J. Build. Phys., 29 (2006) 219-246.
DOI: 10.1177/1744259106060439
Google Scholar
[41]
A. Evrard, A. De Herde, Hygrothermal performance of Lime-Hemp wall assemblies, J. Build. Phys., 34 (2010) 5-32.
DOI: 10.1177/1744259109355730
Google Scholar
[42]
J.M.P.Q. Delgado, A.S. Guimarães, V.P. de Freitas, The Effect of Shading Devices in Rising Damp Phenomenon of Historical Buildings, Def. Diff. Forum, 326-328 (2012) 668–673.
DOI: 10.4028/www.scientific.net/ddf.326-328.668
Google Scholar
[43]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Implementation and Monitoring of Higroregulated Wall Base Ventilation Systems to Control Rising Damp, Def. Diff. Forum, 365 (2015) 154–159.
DOI: 10.4028/www.scientific.net/ddf.365.154
Google Scholar
[44]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Rising Damp: Optimization of the Wall Base Ventilation System, Def. Diff. Forum, 353 (2014) 311–316.
DOI: 10.4028/www.scientific.net/ddf.353.311
Google Scholar
[45]
A.S. Guimarães, J.M.P.Q. Delgado, V.P. de Freitas, Rising Damp in Walls: Evaluation of the Level Achieved by the Damp Front, J. Build. Phys., 37 (2013) 6–27.
DOI: 10.1177/1744259112453822
Google Scholar
[46]
J.M.P.Q. Delgado, A.S. Guimarães, V.P. de Freitas, A Wall Base Ventilation System Applied at Different Wall Geometries – Numerical Simulation of the Evapourative Process, Dry. Tech. 30 (2012) 1–12.
DOI: 10.1080/07373937.2011.610913
Google Scholar
[47]
A.S. Guimarães, V.P. de Freitas, Wall base ventilation system as a new technique to treat rising damp in existent buildings, J. Build. Appraisal, 5 (2099) 187-195.
DOI: 10.1057/jba.2009.29
Google Scholar
[48]
V.P. Freitas, Report about the moisture behaviour in the Church of Vilar de Frades, Areias de Vilar, Barcelos – Braga, Portugal, IPPAR – Portuguese Institute of architectonic heritage, Report HT – 181/02, Prof. Engº Vasco Peixoto de Freitas, Lda, Porto, Portugal, 2002. (in Portuguese).
Google Scholar
[49]
A.S. Guimarães, Experimental characterization of the wall base ventilation systems operation to the treatment of rising damp, MSc Thesis, Faculdade de Engenharia da Universidade do Porto, Portugal, 2008. (in Portuguese).
Google Scholar
[50]
WIPO, Link: http: /www. wipo. int/patentscope/search/en/WO2010093272, (2011).
Google Scholar
[51]
V.P. Freitas, A.S. Guimarães, J.M.P.Q. Delgado, The HUMIVENT Device for Rising Damp Treatment, Rec. Patents Eng., 5 (2011) 233–240.
DOI: 10.2174/187221211797636863
Google Scholar
[52]
D. Watt, B. Colston, Investigating the effects of humidity and salt crystallization on medieval masonry, Build. Environm., 35 (2000) 737-749.
DOI: 10.1016/s0360-1323(00)00015-9
Google Scholar
[53]
J.M.P.Q. Delgado, V.P. de Freitas, Salt Degradation in Stone of Old Buildings, Def. Diff. Forum, 334-335 (2013) 337–342.
DOI: 10.4028/www.scientific.net/ddf.334-335.337
Google Scholar