Paper Title:
Influence of High Temperature Heat Sources on the Moisture and Temperature Distribution in a Real/Virtual Foundry Sand Mould
  Abstract

The problem described in the paper concerns the thermo-physical properties of the green mould material to which the cast iron is most often poured. The study includes the experiment of pouring the cast iron plate into green bentonite-sand mould. The temperature fields of casting and in different zones of the mould were recorded. The goal of the study was to determine the substitute thermo-physical properties of mould sand containing the over-moisture zone by means of simulation tests (inverse problem). An originality of the related research is an attempt to take into account the effects of the global thermal phenomena occurring in the quartz sand bonded by bentonite-water binder, by application of the substitute thermal coefficients without using the coupled modeling. In the simulation tests in order to achieve the effect of rapid heating of the mould (below temperatures 100 °C) by poured cast iron (T>1300 °C), the function of the latent heat source and the modified values of substitute thermal conductivity and substitute specific heat of the molding sand were used. In order to facilitate the solution, the mould was divided into zones, in which different starting humidity of molding sand was assumed.

  Info
Periodical
Edited by
J.M.P.Q. Delgado
Pages
69-83
DOI
10.4028/www.scientific.net/DF.7.69
Citation
P. Popielarski, Z. Ignaszak, "Influence of High Temperature Heat Sources on the Moisture and Temperature Distribution in a Real/Virtual Foundry Sand Mould", Diffusion Foundations, Vol. 7, pp. 69-83, 2016
Online since
June 2016
Export
Price
$35.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Qi Zhang, La Dao Yang
Abstract:A model of heat transfer and solidification of continuous cast has been established, including boundary conditions in the mold and spray...
1431
Authors: Yan Jin, Zhi Bing Tian
Abstract:Because the dynamic soft reduction of continuous casting process is based on the computation of the solidification end point, using model to...
3936
Authors: Ying Zhang, Guo Rui Jia, Xian Jiao Xie, Shui Sheng Xie, Jin Yu He, De Fu Li, Wen Sheng Sun, Mao Peng Geng
Smart/Intelligent Materials/Intelligent Systems
Abstract:Numerical method was used to simulate the solidification process of zinc-aluminum alloy Zamak 5, shrinkage porosity of the zinc-aluminum...
2902
Authors: Shi Mei Sun, Jing Min Zhou
Chapter 5: Chemical System Engineering
Abstract:A High Temperature Heat Pipe Heat Exchanger Consists of Heat Pipes Filled with Different Working Media inside. in Different Temperature...
897
Authors: Wei Wei, Ming Zhong Wang, Jun Pan
Chapter 8: Architectural Environment & Equipment Engineering
Abstract:In order to avoid the heat transfixion among users in the concentration area of the water source heat pump, a suitable layout of pumps for...
3027