Towards an Exergy Analysis of Diffusive and Non-Diffusive Processes in Living Organisms

Article Preview

Abstract:

Living organisms are open dissipative thermodynamic systems that rely on mechano-thermo-electrochemical interactions to survive. Plant physiological processes allow plants to survive by converting solar radiation into chemical energy, and store that energy in form that can be used. Mammals catabolize food to obtain energy that is used to fuel, build and repair the cellular components. The exergy balance is a combined statement of the first and second laws of thermodynamics. It provides insight into the performance of systems. In this paper, exergy balance equations for both mammal’s and green plants are presented and analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-184

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Lotka, Contribution to the energetics of evolution, Proc. Natl. Acad. Sci. USA 8 (1922) 147–151.

Google Scholar

[2] A. J. Lotka, Natural selection as a physical principle, Proc. Natl. Acad. Sci. USA 8 (1922) 151–154.

Google Scholar

[3] I. Prigogine, Structure, dissipation and life, in: M. Marois (Ed. ), Theoretical Physics and Biology, North-Holland, Amsterdam, 1969, p.23–52.

Google Scholar

[4] P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley-Interscience, New York, (1971).

DOI: 10.1126/science.176.4042.1410

Google Scholar

[5] D. Kondepudi, I. Prigogine, Modern Thermodynamics, From Heat Engine to Dissipative Structures, Wiley, New York, (1999).

Google Scholar

[6] A. F. Miguel, Quantitative unifying theory of natural design of flow systems: emergence and evolution, in: L. Rocha, S. Lorente, A. Bejan (Eds. ), Constructal Law and the Unifying Principle of Design, Springer, New York, 2013, chapter 2, p.21–38.

DOI: 10.1007/978-1-4614-5049-8_2

Google Scholar

[7] I. Prigogine, Time, structure, and fluctuations, Science 201 (2001) 777–785.

Google Scholar

[8] A. F. Miguel, The emergence of design in pedestrian dynamics: locomotion, self-organization, walking paths and constructal law, Physics of Life Reviews 10 (2013) 168–190.

DOI: 10.1016/j.plrev.2013.03.007

Google Scholar

[9] A. F. Miguel, Toward an optimal design principle in symmetric and asymmetric tree flow networks, Journal of Theoretical Biology 389 (2016) 101-109.

DOI: 10.1016/j.jtbi.2015.10.027

Google Scholar

[10] I. Dincer, Y. A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering, Entropy 3 (2001) 116–149.

DOI: 10.3390/e3030116

Google Scholar

[11] A. F. Miguel, M. Aydin, Ocean exergy and energy conversion systems, Int. J. of Exergy 10 (2013) 454–470.

DOI: 10.1504/ijex.2012.047507

Google Scholar

[12] A. F. Miguel, A study of entropy generation in tree-shaped flow structures, International Journal of Heat and Mass Transfer 92 (2016) 349–359.

DOI: 10.1016/j.ijheatmasstransfer.2015.08.067

Google Scholar

[13] H. Ziegler, Introduction to Thermomechanics, North-Holland, Amsterdam, (1983).

Google Scholar

[14] H. Ziegler, C. Wehrli, On a principle of maximal rate of entropy production, J. Non-Equilib. Thermodyn. 12 (1987) 229–243.

Google Scholar

[15] L. M. Martyusheva, V. D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Physics Reports 426 (2006) 1– 45.

DOI: 10.1016/j.physrep.2005.12.001

Google Scholar

[16] M. Batato, L. Borel, O. Deriaz, E. Jequier, Analyse exergétique théorique et expérimentale du corps humain, Entropie: Énergétique et Dynamique des Systèmes Complexes: la revue internationale des sciences et techniques en énergétique, génie chimique, génie biologique 153/154 (1990).

DOI: 10.3917/dunod.feidt.2014.01.0861

Google Scholar

[17] M. Prek, Thermodynamical analysis of human thermal comfort, Energy 31 (2006) 732–743.

DOI: 10.1016/j.energy.2005.05.001

Google Scholar

[18] M. Saito, M. Shukuya, The human body consumes exergy for thermal comfort, Low-Ex News 37(2): 5e6. IEA/ECBCS-Annex, (2001).

Google Scholar

[19] M. Shukuya, M. Saito, K. Isawa, T. Iwamatsu, H. Asada, Human-body exergy balance and thermal comfort, IEA/ECBCS-Annex49 Report, (2010).

Google Scholar

[20] A. Simone, J. Kolarik, T. Iwamatsu, H. Asada, M. Dovjak, L. Schellen L, M. Shukuya, B.W. Olesen, A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation, Energy and Buildings 43 (2011) 1–9.

DOI: 10.1016/j.enbuild.2010.08.007

Google Scholar

[21] C. E. K. Mady, M. S. Ferreira, J. I. Yanagihara, P. H. N. Saldiva, S. Oliveira Jr., Modeling the exergy behavior of human body, Energy 4 (2012) 546–553.

DOI: 10.1016/j.energy.2012.02.064

Google Scholar

[22] C. E. K. Mady, M. S. Ferreira, J. I. Yanagihara, S. Oliveira Jr., Human body exergy analysis and the assessment of thermal comfort conditions, International Journal of Heat and Mass Transfer 77 (2014) 577–584.

DOI: 10.1016/j.ijheatmasstransfer.2014.05.039

Google Scholar

[23] A. Simone, J. Kolarik, T. Iwamatsu, H. Asada, M. Dovjak, L. Schellen, M. Shukuya, B. W. Olesen, A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation, Energy and Buildings 43 (2011) 1–9.

DOI: 10.1016/j.enbuild.2010.08.007

Google Scholar

[24] G. Bisio, A. Bisio, Some thermodynamic remarks on photosynthetic energy conversion, Energy Conversion and Management, 39(1998) 741–748.

DOI: 10.1016/s0196-8904(97)10042-5

Google Scholar

[25] A. H. Reis, A. F. Miguel, Analysis of the exergy balance of green leaves. International Journal of Exergy, 3 (2006) 231–238.

DOI: 10.1504/ijex.2006.009779

Google Scholar

[26] S.E. Jørgensen, Y. M. Svirezhev, Towards a Thermodynamic Theory for Ecological Systems, Elsevier, Amsterdam, (2004).

Google Scholar

[27] R. Petela, An approach to the exergy analysis of photosynthesis, Solar Energy 82 (2008) 311–328.

DOI: 10.1016/j.solener.2007.09.002

Google Scholar

[28] S. Lems, H. J. van der Kooi, J. de Swaan Arons, Exergy analyses of the biochemical processes of photosynthesis, Int. J. Exergy 7 (2010) 333–351.

DOI: 10.1504/ijex.2010.031988

Google Scholar

[29] C. S. Silva, W. D. Seider, N. Lior, Exergy efficiency of plant photosynthesis, Chemical Engineering Science 130 (2015) 151–171.

DOI: 10.1016/j.ces.2015.02.011

Google Scholar

[30] A. Bejan, I. Dincer, S. Lorente, A. F. Miguel, A. H. Reis, Porous and Complex Flow Structures in Modern Technologies, Springer, New York, (2004).

DOI: 10.1007/978-1-4757-4221-3

Google Scholar

[31] M. Pessarakli, Handbook of photosynthesis, 2nd ed., CRC Press, Boca Raton, (2005).

Google Scholar

[32] A. F. Miguel, A. Silva, Solar irradiation in diffusely enclosures with partitions, Applied Energy 87 (2010) 836–842.

DOI: 10.1016/j.apenergy.2009.10.003

Google Scholar

[33] I. Muñoz, L. M. Canals, R. Clift, G. Doka, A simple model to include human excretion and wastewater treatment in Life Cycle Assessment of food products, Centre for Environmental Strategy, University of Surrey, Guildford (Surrey), (2007).

Google Scholar

[34] J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, W. H. Freeman, New York, (2002).

Google Scholar

[35] A. F. Miguel, Lungs as a natural porous media: architecture, airflow characteristics and transport of suspended particles, in: J.M.P.Q. Delgado (Ed. ), Heat and Mass Transfer in Porous Media, Advanced Structured Materials Series (volume 13), Springer, Berlin, 2012, chapter 5, p.115.

DOI: 10.1007/978-3-642-21966-5_5

Google Scholar

[36] J. R. B. Lighton, Measuring Metabolic Rates: A Manual for Scientists, Oxford University Press, Oxford, (2008).

Google Scholar

[37] A. C. Burton, O. G. Edholm, Man in a Cold Environment, Edward Arnold, London, (1955).

Google Scholar