Electrical and Dielectric Properties of Polymer-Metal Hybrid Nanocomposites - A Short Review

Article Preview

Abstract:

Polymer-metal hybrid nanocomposites have garnered significant attention in recent years due to their exceptional electrical and dielectric properties, which find applications in a wide range of industries, including electronics, energy storage, and advanced materials. This review article provides a comprehensive overview of the current state-of-the-art in the field of polymer-metal hybrid nanocomposites, with a particular focus on their electrical and dielectric properties. The first section of the review delves into the synthesis and fabrication techniques employed to create these nanocomposites, highlighting the importance of controlling the dispersion and distribution of metal nanoparticles within the polymer matrix. Various approaches, such as in-situ polymerization, melt mixing, and electrospinning, are discussed in detail, along with their respective advantages and limitations.The subsequent sections explore the influence of metal nanoparticles on the electrical conductivity and dielectric constant of the nanocomposites. The role of factors such as nanoparticle size, shape, and concentration in determining these properties is thoroughly examined. Moreover, the impact of metal surface modifications and the choice of polymer matrix on enhancing electrical and dielectric performance are also addressed. In addition to discussing fundamental aspects, this review highlights practical applications of polymer-metal hybrid nanocomposites in the development of high-performance capacitors, sensors, electromagnetic shielding materials, and flexible electronics. The potential for these materials to revolutionize various technological sectors is discussed, emphasizing their role in advancing miniaturization, energy efficiency, and durability. Furthermore, the review outlines current challenges and future prospects in the field, including the need for a deeper understanding of the underlying mechanisms governing electrical and dielectric behavior in these nanocomposites. Emerging trends such as the incorporation of 2D materials and the development of multifunctional hybrid systems are also explored, hinting at exciting avenues for further research and innovation. In conclusion, polymer-metal hybrid nanocomposites offer a promising platform for tailoring electrical and dielectric properties to meet the demands of modern technology. This review serves as a valuable resource for researchers, engineers, and scientists seeking to explore the potential of these materials and drive advancements in the field of electrical and dielectric engineering.

You might also be interested in these eBooks

Info:

Pages:

1-13

Citation:

Online since:

June 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Adimule V, Yallur B.C, Bhowmik, D. Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low-Cost Optoelectronics Applications. Trans. Electr. Electron. Mater. 23, 288-303 (2022).

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[2] Pandey J. C., Singh M., SPE Polym. Dielectric polymer nanocomposites: Past advances and future prospects in electrical insulation perspective. 2021, 2(4), 236.

DOI: 10.1002/pls2.10059

Google Scholar

[3] Praveen G, Eric R, Brian C, Ravishankar S, Linda S. S. Dielectric Properties of Polymer Nanocomposite Interphases Using Electrostatic Force Microscopy and Machine Learning. ACS Appl. Electron. Mater. 2023, 5, 2, 794–802

DOI: 10.1021/acsaelm.2c01331

Google Scholar

[4] Abdul NI, Yusoff N, Ahmad M.H, Zulkifli M, Wahit M.U. Dielectric, Mechanical, and Thermal Properties of Crosslinked Polyethylene Nanocomposite with Hybrid Nanofillers. Polymers. 2023; 15(7):1702.

DOI: 10.3390/polym15071702

Google Scholar

[5] Kuruvilla S.P, Renukappa N, Rajan J.S. Influence Hybrid Fillers on Electrical and Mechanical Properties of Fiber Reinforced Epoxy Composites. Int. J. Eng. Res. Technol. IJERT 2020, 9, 376–383.

DOI: 10.17577/ijertv9is010209

Google Scholar

[6] Vinayak A. Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties. IOP Conf. Ser.: Mater. Sci. Eng. 577 (2019) 012032.

DOI: 10.1088/1757-899x/577/1/012032

Google Scholar

[7] Awan H.A, Amin S, Rahman T, Asad U, Awais M. Effect of regular and core shell nano fillers on the partial discharge and tracking performance of low-density polyethylene. Mater. Res. Express 2020, 7, 015062.

DOI: 10.1088/2053-1591/ab66ed

Google Scholar

[8] Adimule V, Vageesha P, Bagihalli G., Bowmik D., Adarsha H.J. Synthesis, Characterization of Hybrid Nanomaterials of Strontium, Yttrium, Copper Doped with Indole Schiff Base Derivatives Possessing Dielectric and Semiconductor Properties. In: Sridhar, V., Padma, M., Rao, K. (eds) Emerging Research in Electronics, Computer Science and Technology. Lecture Notes in Electrical Engineering, (2019) 545.

DOI: 10.1007/978-981-13-5802-9_97

Google Scholar

[9] Sushma P, Madihally N, Praveen B. M, Jayadev P, Shambonahalli R. M, Kenchaiah S, Structural, electrical and dielectric properties of chitosan/polyaniline/vanadium-pentoxide hybrid nanocomposites, Journal of Molecular Structure, 1267, 2022.

DOI: 10.1016/j.molstruc.2022.133600

Google Scholar

[10] Abdulwahhab H M, Emaad B A, Dhia H. Dielectric properties of synthesized ternary hybrid nanocomposite embedded in poly (vinyl alcohol) matrix films. Polymers and Polymer Composites. 29(7) 1089–1100. 2021.

DOI: 10.1177/0967391120951406

Google Scholar

[11] Jeong J.W, Hwang H.S, Choi D, Ma B. C, Jung J, Chang M. Hybrid Polymer/Metal Oxide Thin Films for High Performance, Flexible Transistors. Micromachines. 2020; 11(3):264.

DOI: 10.3390/mi11030264

Google Scholar

[12] Kim M.J, Pak, K, Hwang W.S. Im S.G. Cho B.J. Novel Vapor-Phase Synthesis of Flexible, Homogeneous Organic–Inorganic Hybrid Gate Dielectric with sub 5 nm Equivalent Oxide Thickness. ACS Appl. Mater. Interfaces. 10 (2018) 37326–37334.

DOI: 10.1021/acsami.8b12716

Google Scholar

[13] Yu F, Meng-Lu L, Wei-Li L, Tian-Dong Z, Yu Z, Wei-Dong F. Polymer/metal multi-layers structured composites: A route to high dielectric constant and suppressed dielectric loss. Appl. Phys. Lett. 112, (2018) 022901.

DOI: 10.1063/1.5009795

Google Scholar

[14] V. Adimule, B.C. Yallur, A.H.J. Gowda, Crystal structure, morphology, optical and super-capacitor properties of Srx: α-Sb2O4 nanostructures, Anal. Bioanal. Chem. (2022)

Google Scholar

[15] S. Khalid, R. Nazir, Hybrid Metal-Polymer Nanocomposites: Synthesis, Characterization, and Applications. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. (2021).

DOI: 10.1007/978-3-030-40513-7_78

Google Scholar

[16] S. Essawi, L. Nasrat, H. Ismail, J. Asaad, Effect of nanoparticles on dielectric, mechanical and thermal characteristics of XLPE/TiO2 nanocomposites. Int. J. Adv. Technol. Eng. Explor. 8 (2021) 1243.

Google Scholar

[17] S. Jitha, A. S. Jayan, A. Saritha, J. Kuruvilla, Electrical and dielectric properties of nanoparticles-based polymer composites. Nanoparticle-Based Polymer Composites. Woodhead Publ. ser. electron. opt. mater. (2022) 197-218.

DOI: 10.1016/b978-0-12-824272-8.00011-7

Google Scholar

[18] V. Adimule, D. Bhowmik, A.H.J. Gowda, Morphology, characterization, and gas sensor properties of Sr doped WO3 thin film nanostructures. Macromol. Symp. (2021).

DOI: 10.1002/masy.202100065

Google Scholar

[19] J. Thomas, S. Thomas, Z. Ahmad, Crosslinkable Polyethylene Based Blends and Nanocomposites; Springer: Cham. (2021).

Google Scholar

[20] M. Lei, Z. Chen, H. Lu, K. Yu, Recent progress in shape memory polymer composites: Methods, properties, applications and prospects. Nanotechnol. Rev. 8 (2019) 327–351.

DOI: 10.1515/ntrev-2019-0031

Google Scholar

[21] S. Sahu, A.P. Sahoo, L. Shubhadarshinee, D.S. Ramakrishna, A.K. Barick, Effect of Polyaniline Coated Carbon Nanotube and Nano silver Hybrid Nanoparticles on the Dielectric Properties of Poly (methyl Methacrylate) Nanocomposites. Polym. Compos. 39 (2018) 1294-1305.

DOI: 10.1002/pc.24877

Google Scholar

[22] S. Vineeta, Review on the Electromagnetic Interference Shielding Materials fabricated by Iron Ingredients. Nanoscale Adv. 1 (2019) 1640-1671.

DOI: 10.1039/c9na00108e

Google Scholar

[23] A. D. de Oliveira, C. A. Gonçalves Beatrice, Polymer Nanocomposites with Different Types of Nanofiller. Nanocomposites - Recent Evolutions (2019).

DOI: 10.5772/intechopen.81329

Google Scholar

[24] G. Qingchuan, G. Reza, W. Thomas, A. Andreas, G. Evgeny, E. Cemal, M. Olaf, C. Wei, C. Boris, O. Andreas. Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers. 6 (2014) 2037-2050.

DOI: 10.3390/polym6072037

Google Scholar

[25] Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E. L. Gurevich, C. Esen, O. Medenbach, W. Cheng B. Chichkov, A. Ostendorf. Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers. 6 (7) (2014) 2037-2050.

DOI: 10.3390/polym6072037

Google Scholar

[26] V. Adimule, B.C. Yallur, R. Keri, C. Bathula, S. Batakurki, Microstructure, Photoluminescence and Electrical Properties of SmxGd(1−x): SrO Hybrid Nanomaterials Synthesized via Facile Coprecipitation Method. Electron. Mater. Lett. 19(3) (2023) 278-297.

DOI: 10.1007/s13391-022-00394-0

Google Scholar

[27] N. Manhas, L.S. Kumar, V. Adimule, Photoluminescence and supercapacitive properties of carbon dots nanoparticles: A review. JMNM. 37 (2023) 1-22.

DOI: 10.4028/p-lpi6yw

Google Scholar

[28] A. Alonso, J. Macanas, G.L. Davies, Y.K. Gunko, M. Munoz, D.N. Muraviev, Environmentally-Safe Polymer-Metal Nanocomposites with Most Favorable Distribution of Catalytically Active and Biocide Nanoparticles. Adv. in Nano. Tech. (2011).

DOI: 10.5772/18064

Google Scholar

[29] M. Challa, M. R. Ambika, S.R. Usharani, B. C. Yallur, V. Adimule, Enhancement of Band Gap Energy and Crystallinity of Cu-MOFs Due to Doping of Nano Metal Oxide. Adv Mat Res. 1173 (2022) 13-22.

DOI: 10.4028/p-f9yx5h

Google Scholar

[30] N. Manhas, V. Adimule, P. Lakshminarayana, R. Keri, L. S. Kumar, C. Bathula, Utilization of Co2+ doped Eu2O3 nanostructures and their effect on the dielectric and photoisomerization of liquid crystals. Physics of Fluids, 35(10) (2023).

DOI: 10.1063/5.0171578

Google Scholar

[31] A. Halfadji, M. Naous, S. Rajendrachari, Y. Ceylan, K. Betül Ceylan, P.V. Raja Shekar, Effective investigation of electro-catalytic, photocatalytic, and antimicrobial properties of porous CuO nanoparticles green synthesized using leaves of Cupressocyparis leylandii. J. Mol. Struct. 1301 (2024) 137318.

DOI: 10.1016/j.molstruc.2023.137318

Google Scholar

[32] Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu, H. Wu, Dielectric properties, and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A: Appl. Sci. Manuf. 118 (2019) 302-311.

DOI: 10.1016/j.compositesa.2018.12.022

Google Scholar

[33] N. Xu, X. Xiao, H. Yang, E. Yu, Q. Zhang. Enhanced dielectric constant and suppressed dielectric loss of ternary composites based on Ag-P(VDF-HFP) matrix and TiO2 nanowires. Ceram. Int. 42 (2016) 12475-12481.

DOI: 10.1016/j.ceramint.2016.05.031

Google Scholar

[34] T.T. Mai Phan, N.C. Chu, V.B. Luu, H.N. Xuan, I. Martin, P. Carriere, The role of epoxy matrix occlusions within BaTiO3 nanoparticles on the dielectric properties of functionalized BaTiO3/epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 90 (2016) 528-535.

DOI: 10.1016/j.compositesa.2016.08.018

Google Scholar

[35] A. Sharma, S. Basu, N. Gupta, Investigation of the interface in nanodielectrics using electrostatic force microscopy. IEEE Transactions on Dielectrics and Electrical Insulation 27 (2020) 433– 441.

DOI: 10.1109/tdei.2019.008435

Google Scholar

[36] Y. Dai, X. Zhu, Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles. Korean J. Chem. Eng., (2018).

DOI: 10.1007/s11814-018-0047-3

Google Scholar

[37] B. Canimkurbey, c. cakirlar, S. P. Mucur, M. Yasin, S. Berber, Influence of Al2O3 nanoparticles incorporation on the dielectric properties of solution processed PVA films for organic field effect transistor applications. J Mater Sci: Mater Electron 30 (2019) 18384–18390.

DOI: 10.1007/s10854-019-02192-1

Google Scholar

[38] A. F. Al Naim, H. AlFannakh, S. Arafat, S. S. Ibrahim, Characterization of PVC/MWCNTs Nanocomposite: Solvent Blend. Sci Eng Compos Mater. 27 (2020) 55–64.

DOI: 10.1515/secm-2020-0003

Google Scholar

[39] T. Haixiong, L. Yirong, H. A. Sodano, Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors. Adv. Energy Mater. 3 (2013) 451–456.

DOI: 10.1002/aenm.201200808

Google Scholar

[40] P. Feng, M. Zhong, W. Zhao, Stretchable multifunctional dielectric nanocomposites based on polydimethylsiloxane mixed with metal nanoparticles. Mater. Res. Express 7 (2020) 015007.

DOI: 10.1088/2053-1591/ab5b4b

Google Scholar

[41] Q. Zheng, P. Zhu, Y. Wu, R. Sun, C. Wong, Dielectric properties of Ni-BaTiO3-PVDF composites with different Ni morphology. IMPACT (2012) 267-270.

DOI: 10.1109/impact.2012.6420221

Google Scholar

[42] M.Rahimabady, L.Lu, K. Yao, Nanocomposite multilayer capacitors comprising BaTiO3@TiO2 and poly(vinylidene fluoride-hexafluoropropylene) for dielectric-based energy storage. J. Adv. Dielectr. 4, (2014) 1450009.

DOI: 10.1142/s2010135x1450009x

Google Scholar

[43] G. Shimoga, K. Sang-Youn, High-k Polymer Nanocomposite Materials for Technological Applications. Appl. Sci. 10 (2020), 4249.

Google Scholar

[44] V. Adimule, S. Rajendrachari, R. Mahale, S. Batakurki, B. C. Yallur, S. Nandi, G. Bagihalli. Dielectric and Mechanical Properties of Silicone Rubber Composites Reinforced by Conductive Carbon Black and Neopentyl Glycol Diglycidyl Ether. Silicon 15 (2023) 2811–2828.

DOI: 10.1007/s12633-022-02210-8

Google Scholar

[45] V. Adimule, R.Keri, S. Rajendrachari, P. Kendrekar, C.V. Kulkarni, Highly photoluminescence and wide band gap insulating metal hybrid nanoparticles array of samarium-doped SrO:CdO synthesis, characterizations and sensor characteristics. J Mater Sci Mater Electron. 34 (2023) 442.

DOI: 10.1007/s10854-023-09899-2

Google Scholar

[46] S. Rajendrachari, G. K. Jayaprakash, A. Pandith, A. C. Karaoglanli, O. Uzun, Electrocatalytic investigation by improving the charge kinetics between carbon electrodes and dopamine using bio-synthesized CuO nanoparticles. Catalysts. 12 (2022) 994.

DOI: 10.3390/catal12090994

Google Scholar

[47] S. Sankar, K. Parvathi, M.T. Ramesan, Structural characterization, electrical properties, and gas sensing applications of polypyrrole/Cu-Al2O3 hybrid nanocomposites. High Perform. Polym. 32 (6) (2020) 719-728.

DOI: 10.1177/0954008319899157

Google Scholar

[48] V. Dhayal, S. Z. Hashmi, U. Kumar, B. L. Choudhary, A. E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S. N. Dolia, P. A. Alvi. Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J Mater Sci. 55 (2020) 14829–14847.

DOI: 10.1007/s10853-020-05093-5

Google Scholar

[49] M. Takala, B. Sonerud, H. Ranta, Effect of low amount of nanosilica on dielectric properties of polypropylene. International Conference on Solid Dielectrics; Potsdam, Germany. (2010).

DOI: 10.1109/icsd.2010.5568095

Google Scholar

[50] C. Pecharroman, J.S. Moya. Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv Mater. 12 (2000) 296–297.

DOI: 10.1002/(sici)1521-4095(200002)12:4<294::aid-adma294>3.0.co;2-d

Google Scholar

[51] D.S. Mc Lachlan, I.I. Oblakova, A.B. Pakhomov, The complex dielectric constant of a metal (superconductor) – insulator system near the percolation threshold. Physica B. 194–196 (1994) 2011-2012.

DOI: 10.1016/0921-4526(94)91505-9

Google Scholar

[52] W. Song, B. Han, D. Zhang D, Preparation and properties of BiFeO3 /LDPE nanocomposite. IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). (2015).

DOI: 10.1109/icpadm.2015.7295393

Google Scholar

[53] S. Bian, S. H. Jayaram, E.A. Cherney. Use of electrospinning to disperse nanosilica into silicone rubber. Annu Rep Conf Electr. Insul. Dielectr. Phenom. (2010) 1–4.

DOI: 10.1109/ceidp.2010.5724089

Google Scholar