[1]
D. Darmawan, V. Genua, S. Kristianto, and J. I. Hutubessy, Indonesia's prospective plantation crops. Qiara Media Publisher, 2021.
Google Scholar
[2]
W. Winanti, P. Prasetiyadi, and W. Wiharja, "treatment of Palm Oil Mill Effluent (POME) to produce biogas using anaerobic system of Fixed Bed Reactor without netralisation process," Jurnal Teknologi Lingkungan Vol, vol. 20, no. 1, 2019.
DOI: 10.29122/jtl.v20i1.3248
Google Scholar
[3]
L. Maulinda, "Initial processing of liquid waste from palm oil factories physically" Jurnal Teknologi Kimia Unimal, vol. 2, no. 2, pp.31-41, 2017.
Google Scholar
[4]
G. W. Murti et al., " Review of the Latest Pretreatment Technology for POME Liquid Waste as Biogas Digester Feed," JTERA (Jurnal Teknol. Rekayasa), vol. 4, p.17, 2019.
DOI: 10.31544/jtera.v4.i1.2019.17-28
Google Scholar
[5]
R. Komala and S. Aziz, " The effect of the aeration process on the aerobic processing of palm oil mill liquid waste at PTPN VII," Jurnal Redoks, vol. 4, no. 2, pp.7-16, 2019.
Google Scholar
[6]
Zahratunnisa et al., "Polyamide 66 hybrid TiO2–pectin flat-sheet membrane applied to wetland water ultrafiltration," Membrane Technology, vol. 2024, no. 1, 2024.
DOI: 10.12968/s0958-2118(24)70001-9
Google Scholar
[7]
G. Ji et al., "The interpretation of diverging hydrogen and carbon dioxide permeations with temperature across silica-based membranes," Journal of Membrane Science, vol. 695, p.122472, 2024/03/01/ 2024.
DOI: 10.1016/j.memsci.2024.122472
Google Scholar
[8]
M. Elma et al., "Fabrication of silica-nypa membrane applied for water desalination," in AIP Conference Proceedings, 2024, vol. 2710, no. 1: AIP Publishing.
Google Scholar
[9]
D. P. Sari et al., "Fabrication of organo-silica thin film for water desalination from dual silicate precursor (tetraethylorthosilicate & methyltriethoxysilane)," AIP Conference Proceedings, vol. 2682, no. 1, 2023.
DOI: 10.1063/5.0114126
Google Scholar
[10]
A. Rahma et al., "Novel spent bleaching earth industrial waste as low-cost ceramic membranes material: elaboration and characterization," Materials Today: Proceedings, 2023/03/11/ 2023.
DOI: 10.1016/j.matpr.2023.02.387
Google Scholar
[11]
N. A. Maulida, S. H. Fitriah, A. Aliah, E. L. A. Rampun, and M. Elma, "Preparation and performance of interlayer-free organosilica membranes on zirconia support," in AIP Conference Proceedings, 2023, vol. 2667, no. 1: AIP Publishing.
DOI: 10.1063/5.0112161
Google Scholar
[12]
M. Elma, L. Septyaningrum, Rahmawati, and A. Rahma, "Vacuum versus air calcination of modified TEOS-MTES based membrane for seawater desalination," AIP Conference Proceedings, vol. 2711, no. 1, 2023.
DOI: 10.1063/5.0137739
Google Scholar
[13]
E. O. Ezugbe and S. Rathilal, "Membrane technologies in wastewater treatment: a review," Membranes, vol. 10, no. 5, p.89, 2020.
DOI: 10.3390/membranes10050089
Google Scholar
[14]
A. Rahma et al., "Functionalization and Deconvolution of Tubular Ceramic Support Membrane Prepare from High Silica Spent Bleaching Earth by Centrifugal Casting," Key Engineering Materials, vol. 975, pp.87-94, 2024.
DOI: 10.4028/p-dE2XpU
Google Scholar
[15]
A. Rahma, M. Elma, E. L. A. Rampun, S. L. Situngkir, and M. F. Hidayat, "Effect of backwashing process on the performance of an interlayer-free silica–pectin membrane applied to wetland saline water pervaporation," Membrane Technology, vol. 2022, no. 3, 2022.
DOI: 10.12968/S0958-2118(22)70019-5
Google Scholar
[16]
A. Rahma, M. Elma, Aliah, U. Kusumawati, and N. Dony, "Novel Multi-Channel Coated Silica Based Membranes Applied for Peat Water Ultrafiltration," Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 100, no. 3, pp.133-145, 11/11 2022.
DOI: 10.37934/arfmts.100.3.133145
Google Scholar
[17]
M. Elma, A. Rahma, U. Kusumawati, R. K. Pratama, and A. D. Alyanti, "Single Vs Multichannel Silica-Pectin Ultrafiltration Membranes for Treatment of Natural Peat Water," Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 100, no. 2, pp.33-46, 10/17 2022.
DOI: 10.37934/arfmts.100.2.3346
Google Scholar
[18]
M. Elma, I.F. Nata, N.A. Maulida, S.H. Fitriah, E.L.A. Rampun, and A. Rahma, "Organosilica Multichannel Membranes Prepared by Inner Coating Method Applied for Brackish Water Desalination," in Materials Science Forum, 2022, vol. 1057: Trans Tech Publ, pp.136-143.
DOI: 10.4028/p-785037
Google Scholar
[19]
M. Elma, R. A. Ghani, A. Rahma, A. D. Alyanti, and N. Dony, "Banana Peels Pectin Templated Silica Ultrafiltration Membrane in Disk Plate Configuration Applied for Wetland Water Treatment," Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 100, no. 1, pp.77-88, 2022.
DOI: 10.37934/arfmts.100.1.7788
Google Scholar
[20]
M. Elma et al., "Long-Term Performance and Stability of Interlayer-Free Mesoporous Silica Membranes for Wetland Saline Water Pervaporation," Polymers, vol. 14, no. 5, p.895, 2022.
DOI: 10.3390/polym14050895
Google Scholar
[21]
S. Hernández, S. Lei, W. Rong, L. Ormsbee, and D. Bhattacharyya, "Functionalization of flat sheet and hollow fiber microfiltration membranes for water applications," ACS sustainable chemistry & engineering, vol. 4, no. 3, pp.907-918, 2016.
DOI: 10.1021/acssuschemeng.5b01005
Google Scholar
[22]
M. Mahmud et al., "Step-by-Step Fabrication of PVDF-TiO2 Hollow Fiber Membrane and Its Application Desalination of Wetland Saline Water via Pervaporation," Indonesian Journal of Science and Technology, vol. 8, no. 3, pp.499-516, 2023.
DOI: 10.17509/ijost.v8i3.63433
Google Scholar
[23]
M. Elma et al., "Hollow fiber membrane applied for Sasirangan wastewater desalination integrated with photocatalysis and pervaporation set-up," Materials Today: Proceedings, vol. 51, pp.1298-1302, 2022.
DOI: 10.1016/j.matpr.2021.10.343
Google Scholar
[24]
Isnasyauqiah et al., "Hollow fiber membrane applied for Sasirangan wastewater desalination integrated with photocatalysis and pervaporation set-up," Materials Today: Proceedings, 2021/11/07/ 2021.
DOI: 10.1016/j.matpr.2021.10.343
Google Scholar
[25]
M. Elma et al., "Physicochemical Properties of Mesoporous Organo-Silica Xerogels Fabricated through Organo Catalyst," Membranes, vol. 11, no. 8, p.607, 2021.
DOI: 10.3390/membranes11080607
Google Scholar
[26]
M. Elma et al., "Organo-Silica Membrane Prepared from TEOS-TEVS Modified with Organic-Acid Catalyst for Brackish Water Desalination," Jurnal Rekayasa Kimia & Lingkungan, vol. 16, no. 2, pp.11-18, 2021.
DOI: 10.23955/rkl.v16i2.18107
Google Scholar
[27]
Z. L. Assyaifi et al., "Photocatalytic–pervaporation using membranes based on organo-silica for wetland saline water desalination," Membrane Technology, vol. 2021, no. 7, pp.7-11, 2021.
DOI: 10.1016/S0958-2118(21)00109-9
Google Scholar
[28]
A. Rahma, M. Elma, E. L. A. Rampun, A. E. Pratiwi, A. Rakhman, and Fitriani, "Rapid Thermal Processing and Long Term Stability of Interlayer-free Silica-P123 Membranes for Wetland Saline Water Desalination," Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 71, no. 2, pp.1-9, July 2020 2020, Art no. 1.
DOI: 10.37934/arfmts.71.2.19
Google Scholar
[29]
A. Rahma, M. Elma, A. E. Pratiwi, and E. L. Rampun, "Performance of interlayer-free pectin template silica membranes for brackish water desalination," Membrane Technology, vol. 2020, no. 6, pp.7-11, 2020.
DOI: 10.1016/S0958-2118(20)30108-7
Google Scholar
[30]
R. W. Baker, Membrane technology and applications. John Wiley & Sons, 2012.
Google Scholar
[31]
D. Singh and K. K. Sirkar, "Performance of PVDF flat membranes and hollow fibers in desalination by direct contact membrane distillation at high temperatures," Separation and Purification Technology, vol. 187, pp.264-273, 2017.
DOI: 10.1016/j.seppur.2017.06.012
Google Scholar
[32]
R. Singh, Membrane technology and engineering for water purification: application, systems design and operation. Butterworth-Heinemann, 2014.
Google Scholar
[33]
N. N. N. Mustofar et al., "Transport Behavior in Polymer-Inorganic Membrane: A Review," Journal of Applied Membrane Science & Technology, 2017.
DOI: 10.11113/amst.v19i1.22
Google Scholar
[34]
V. C. Souza and M. G. N. Quadri, "Organic-Inorganic Hybrid Membranes in Separation Processes: A 10-Year Review," Brazilian Journal of Chemical Engineering, 2013.
DOI: 10.1590/s0104-66322013000400001
Google Scholar
[35]
R. Nasir, H. Mukhtar, Z. Man, and D. F. Mohshim, "Material Advancements in Fabrication of Mixed‐Matrix Membranes," Chemical Engineering & Technology, 2013.
DOI: 10.1002/ceat.201200734
Google Scholar
[36]
R. Castro-Muñoz and V. Fíla, "Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes Towards Gas Separation," Membranes, 2018, doi: 10.3390/ membranes8020030.
DOI: 10.3390/membranes8020030
Google Scholar
[37]
M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, "Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review," Membranes, 2018.
DOI: 10.3390/membranes8030050
Google Scholar
[38]
M. Najafi, M. Sadeghi, A. Bolverdi, M. P. Chenar, and M. Pakizeh, "Gas Permeation Properties of Cellulose Acetate/Silica Nanocomposite Membrane," Advances in Polymer Technology, 2017.
DOI: 10.1002/adv.21862
Google Scholar
[39]
M. Huh, H. M. Lee, Y. S. Park, and S. I. Yun, "Biocomposite Membranes Based on Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) and Multiwall Carbon Nanotubes for Gas Separation," Carbon Letters, 2017.
DOI: 10.5714/cl.2017.21.116
Google Scholar
[40]
H.-H. Chang, S.-C. Chen, D.-J. Lin, and L.-P. Cheng, "Preparation of bi-continuous Nylon-66 porous membranes by coagulation of incipient dopes in soft non-solvent baths," Desalination, vol. 313, pp.77-86, 2013.
DOI: 10.1016/j.desal.2012.12.009
Google Scholar
[41]
W. Z. A. W. Jusoh, S. A. Rahman, A. L. Ahmad, and N. M. Mokhtar, "Fabrication and characterisation of a polyamide thin-film composite membrane on a nylon 6, 6 substrate for isopropanol dehydration," Comptes Rendus Chimie, vol. 22, no. 11-12, pp.755-760, 2019.
DOI: 10.1016/j.crci.2019.08.001
Google Scholar
[42]
M. Elma, N. K. D. A. Saraswati, P. F. A. Simatupang, R. Febriyanti, A. Rahma, and F. R. Mustalifah, "Hydrogel derived from water hyacinth and pectin from banana peel as a membrane layer," Materials Today: Proceedings, 2023.
DOI: 10.1016/j.matpr.2023.01.368
Google Scholar
[43]
S. Madaeni, S. Zinadini, and V. Vatanpour, "A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles," Journal of membrane science, vol. 380, no. 1-2, pp.155-162, 2011.
DOI: 10.1016/j.memsci.2011.07.006
Google Scholar
[44]
E. A. Pradhana et al., "The Functionalization Study of PVDF/TiO2 Hollow Fibre Membranes Under Vacuum Calcination Exposure," Journal of Physics: Conference Series, vol. 1912, no. 1, p.012035, 2021.
DOI: 10.1088/1742-6596/1912/1/012035
Google Scholar
[45]
A. Rahma, M. Elma, M. R. Bilad, A. R. Wahid, M. S. Huda, and D. R. Lamandau, "Novel spent bleaching earth industrial waste as low-cost ceramic membranes material: elaboration and characterization," Materials Today: Proceedings, 2023.
DOI: 10.1016/j.matpr.2023.02.387
Google Scholar
[46]
M. Elma et al., "PVDF-TiO2 Hollow Fibre Membrane For Water Desalination," Jurnal Riset Teknologi Pencegahan Pencemaran Industri, vol. 12, no. 1, pp.1-6, 2021.
DOI: 10.21771/jrtppi.2021.v12.no1.p1-6
Google Scholar
[47]
M. Dmitrenko et al., "Novel high flux poly (m-phenylene isophtalamide)/TiO2 membranes for ultrafiltration with enhanced antifouling performance," Polymers, vol. 13, no. 16, p.2804, 2021.
DOI: 10.3390/polym13162804
Google Scholar
[48]
R. Kamaludin, A. S. M. Puad, M. H. D. Othman, S. H. S. A. Kadir, and Z. Harun, "Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5," Polymer Testing, vol. 78, p.105939, 2019.
DOI: 10.1016/j.polymertesting.2019.105939
Google Scholar
[49]
J.-P. Méricq, J. Mendret, S. Brosillon, and C. Faur, "High performance PVDF-TiO2 membranes for water treatment," Chemical Engineering Science, vol. 123, pp.283-291, 2015.
DOI: 10.1016/j.ces.2014.10.047
Google Scholar
[50]
H. C. Man, M. U. Abba, M. Abdulsalam, R. a. S. Azis, A. I. Idris, and M. H. Hamzah, "Utilization of Nano-TiO2 as an influential additive for Complementing Separation Performance of a Hybrid PVDF-PVP Hollow Fiber: Boron removal from leachate," Polymers, vol. 12, no. 11, p.2511, 2020.
DOI: 10.3390/polym12112511
Google Scholar
[51]
L. Setiawan, R. Wang, L. Shi, K. Li, and A. G. Fane, "Novel dual-layer hollow fiber membranes applied for forward osmosis process," Journal of membrane science, vol. 421, pp.238-246, 2012.
DOI: 10.1016/j.memsci.2012.07.020
Google Scholar
[52]
M. Mahmud et al., "Effect of two stages adsorption as pre-treatment of natural organic matter removal in ultrafiltration process for peat water treatment," in Materials Science Forum, 2020, vol. 988: Trans Tech Publ, pp.114-121.
DOI: 10.4028/www.scientific.net/msf.988.114
Google Scholar
[53]
M. Elma et al., "Combination of coagulation, adsorption, and ultrafiltration processes for organic matter removal from peat water," Sustainability, vol. 14, no. 1, p.370, 2021.
DOI: 10.3390/su14010370
Google Scholar
[54]
A. Boulares‐Pender, I. Thomas, A. Prager, and A. Schulze, "Surface modification of polyamide and poly (vinylidene fluoride) membranes," Journal of applied polymer science, vol. 128, no. 1, pp.322-331, 2013.
DOI: 10.1002/app.38145
Google Scholar
[55]
Y. Li, J. Wang, W. Zhang, X. Zhang, and C. Chen, "Effects of Coagulation on Submerged Ultrafiltration Membrane Fouling Caused by Particles and Natural Organic Matter (NOM)," Chinese Science Bulletin, 2011.
DOI: 10.1007/s11434-010-4296-8
Google Scholar
[56]
M. A. Ahmad, B. S. Zainal, N. H. Jamadon, T. C. S. Yaw, and L. C. Abdullah, "Filtration analysis and fouling mechanisms of PVDF membrane for POME treatment," Journal of Water Reuse and Desalination, vol. 10, no. 3, pp.187-199, 2020.
DOI: 10.2166/wrd.2020.101
Google Scholar
[57]
T. Wu, A. W. Mohammad, J. M. Jahim, and N. Anuar, "Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: effect of pressure on membrane fouling," Biochemical engineering journal, vol. 35, no. 3, pp.309-317, 2007.
DOI: 10.1016/j.bej.2007.01.029
Google Scholar
[58]
A. W. Mohammad, P. T. Yap, and T. Y. Wu, "Performance of hydrophobic ultrafiltration membranes in the treatment and protein recovery from palm oil mill effluent (POME)," Desalination and Water Treatment, vol. 10, no. 1-3, pp.332-338, 2009.
DOI: 10.5004/dwt.2009.932
Google Scholar
[59]
B. D. Marsono, I. Agustina, A. Yuniarto, and J. Hermana, "Pressure and Spacer Effect on the Performance of Immersed Microfiltration Membrane," IOP Conference Series Earth and Environmental Science, 2022.
DOI: 10.1088/1755-1315/1111/1/012063
Google Scholar
[60]
T. Y. Haan et al., "Pilot-scale integrated pretreatment/membrane filtration system for aerobic palm oil mill effluent (POME) treatment," Advances in Civil, Environmental, and Material Research (ACEM16), vol. 5, no. 1, pp.1-15, 2016.
Google Scholar