Theoretical Study of the Stability of CdSn Liquid Alloy at Different Temperatures

Article Preview

Abstract:

The quasi-lattice theory (QLT) is utilized for the prediction of the temperature and concentration dependence of the thermodynamic properties of the molten CdSn alloys. At first, the analytical expressions are employed to reckon the excess Gibbs free energy of mixing, Gibbs free energy of mixing, activity, enthalpy of mixing and entropy of mixing as well as concentration fluctuations, short range-order parameter and excess stability function ofCdSn melts at 773 K. For this, the model parameters i.e. size ratio and order energy parameter are assessed using the experimental data of the free energy of mixing for CdSnmelts at 773 K. The theoretical values of the thermodynamic functions are in well harmony with the interrelated experimental values. The theoretical values of the structure function like concentration fluctuations are in unison with the experimental values for molten CdSn system at 773 K. Again, the optimization procedure is applied to explore the excess Gibbs free energy of mixing, activity, concentration fluctuations, short-range order parameter and excess stability function at different temperatures for CdSnmelts. The present study discloses that the stability as well as the segregating nature of CdSnmelts decrease with the elevation of the temperature from 773 K to 1123 K. Further, the temperature dependency of the excess stability function reveals that there is a probability of transition from segregating character to the ordering character of CdSn melts near 1162 K. Keywords: Gibbs free energy of mixing; entropy of mixing; concentration fluctuations; short-range order parameter; excess stability function

You might also be interested in these eBooks

Info:

Pages:

37-51

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ari, B. Saatci, M. Gunduz, F. Meydaneri, M. Bzoklu, Microstructure and thermoelectrical transport properties of CdSn liquid alloys, Mater. Charact. 59, (2008), 624- 630

Google Scholar

[2] R.Hultgren , P.D. Desai, D.T. Hawkins, M. Gleiser K.K. Kelley , Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metal Park, Ohio, (1973)

Google Scholar

[3] R.N. Singh, F. Sommer, Segregation and immiscibility in liquid binary alloys, Rep.Prog. Phys 60, (1997), 57-150

DOI: 10.1088/0034-4885/60/1/003

Google Scholar

[4] D.S. Evans, A. Prince, The thermal analysis Sn-rich CdSn alloys, Thermochemica Acta, 58(2),(1982), 199-209

DOI: 10.1016/0040-6031(82)87082-2

Google Scholar

[5] J. Dulkiewicz, L. Zabdyr, Z. Moser, J. Salawa, The Cd-Sn (Cadmium-Tin) system, Bull. Alloy Phase Diagrams 10(3),(1989),223- 229

DOI: 10.1007/bf02877499

Google Scholar

[6] S.K. Tarby, A comment on CdSn system, Bull. Alloy Phase Diagrams 11,(1990), 103-106

Google Scholar

[7] A.M. Vora, Electrical transport properties of liquid Cd-binary alloys, J. Ovonic Research 3 (3), (2007), 57-66

Google Scholar

[8] P. Terzieff, The viscosity of liquid alloys, J. Alloys and Compd. 453, (2008), 233-240

Google Scholar

[9] A. Quin, R. Wang, Y. Wang, J. Wang, S. Liu, K. Chang, Y. Du, B. Sundman, Thermodynamic assessment of the Cd-X ( X= Sn, Mn, Fe) systems, Calphad 47, (2014),83-91

DOI: 10.1016/j.calphad.2014.06.006

Google Scholar

[10] P. Fima, R. Novakovic, Surface tension modelling of liquid Cd-Sn-Zn alloys, Phil. Mag. 89, (2018), 1608- 1624

DOI: 10.1080/14786435.2018.1448124

Google Scholar

[11] R.P. Koirala, I. Koirala, D. Adhikari, Energetics of mixing and transport phenomena in Cd-X (X= Pb, Sn) melts, BIBECHNA 15, (2018), 199-209

DOI: 10.3126/bibechana.v15i0.18751

Google Scholar

[12] N. Barbin, I. Tikina, D. Terentyev, Thermodynamic modelling of melt of the Bi-Pb-Sn system, J. Conf. Series 2057, (2021), 012104

DOI: 10.1088/1742-6596/2057/1/012104

Google Scholar

[13] E.O. IlO-Okeke, B.C. Anusionwu, O.Popoola, Thermodynamic evaluation of viscosity in In-Zn and Sn-Zn liquid alloys, Phys. Chem. Liq. 43,(2005), 333-342

DOI: 10.1080/00319100500087964

Google Scholar

[14] G.K. Shrestha, B.K. Singh, I.S. Jha, B.P. Singh, D. Adhikari, Optimization method for the study of the properties of Al—Sn binary liquid alloys, Physica B 514, (2017), 1-7

DOI: 10.1016/j.physb.2017.03.005

Google Scholar

[15] Rajendra Prasad Chaudhary, Jagdhar Mandal, Indu Shekhar Jha, Symmetries in the properties of mixing of AgCu liquid alloys at 1423 K, Materials today: Proceedings, 49(5), 2022, 2283-2287

DOI: 10.1016/j.matpr.2021.09.343

Google Scholar

[16] Rajendra Prasad Chaudhary, Jagdhar Mandal, Indu Shekhar Jha, Concentration dependence of the bulk and surface properties of liquid AlZn alloys at 1400 K, Materials Today: Proceedings 59(1), 2022, 397-404

DOI: 10.1016/j.matpr.2021.11.358

Google Scholar

[17] E.A. Guggenheim, Mixtures, Oxford University Press, London, (1952)

Google Scholar

[18] A.B. Bhatia and D.E Thornton, Structural Aspects of the Electrical Resistivity of Binary Alloys, Phys. Rev. B, Phys. Rev. B 2, (1970), 3004-3012

DOI: 10.1103/physrevb.2.3004

Google Scholar

[19] R.N. Singh, Can. J. Phys. 65 , (1987), 309-325

Google Scholar

[20] B.E. Warren, X-ray Diffraction , Reading M.A., Addition-Wesley Pb. , (1969)

Google Scholar

[21] J.M. Cowley, An Approximate Theory of Order in Alloys, Phys. Rev. 77, (1950), 667-675

Google Scholar

[22] L.S. Darken, Trans. Metall. Soc. AIME 239, (1967), 80-89

Google Scholar

[23] T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, (1988)

Google Scholar

[24] O.E. Awe, A.A. Azeez, Temperature dependence of the bulk and surface properties of liquid Zn-Cd Alloys, Appl. Phys. A: Materials Science and Processing 123,(2017),1-10

DOI: 10.1007/s00339-017-0977-3

Google Scholar

[25] A.P. Singh, R.P. Chaudhary, Rupam Kumari, I.S. Jha, Stability of NaK Liquid Alloys at Defferent Temperatures, J. Mandal, Material Today: Proceedings, 66(4), 2022, 2251-2258

DOI: 10.1016/j.matpr.2022.06.097

Google Scholar