[1]
C. Buelow and M. Sheaves, "A birds-eye view of biological connectivity in mangrove systems," Estuar. Coast. Shelf Sci., vol. 152, p.33–43, 2015, doi: https://doi.org/10.1016/ j.ecss.2014.10.014.
DOI: 10.1016/j.ecss.2014.10.014
Google Scholar
[2]
P. Bunting et al., "Global Mangrove Extent Change 1996 – 2020 : Global Mangrove," p.1–32, 2022.
Google Scholar
[3]
C. Kuenzer, A. Bluemel, S. Gebhardt, T. V. Quoc, and S. Dech, "Remote Sensing of Mangrove Ecosystems: A Review," Remote Sensing , vol. 3, no. 5. 2011.
DOI: 10.3390/rs3050878
Google Scholar
[4]
A. Kumari and M. S. Rathore, "Roles of Mangroves in Combating the Climate Change," R. P. Rastogi, M. Phulwaria, and D. K. Gupta, Eds. Singapore: Springer Singapore, 2021, p.225–255.
DOI: 10.1007/978-981-16-2494-0_10
Google Scholar
[5]
T. D. Pham, J. Xia, N. T. Ha, D. T. Bui, N. N. Le, and W. Tekeuchi, "A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018," Sensors, vol. 19, no. 8, p.1933, Apr. 2019.
DOI: 10.3390/s19081933
Google Scholar
[6]
S.S. Rijal, T. D. Pham, S. Noer'Aulia, M. I. Putera, and N. Saintilan, "Mapping Mangrove Above-Ground Carbon Using Multi-Source Remote Sensing Data and Machine Learning Approach in Loh Buaya, Komodo National Park, Indonesia," Forests, vol. 14, no. 1, 2023.
DOI: 10.3390/f14010094
Google Scholar
[7]
M. Kamal, M. F. Hidayatullah, P. Mahyatar, and S. M. Ridha, "Estimation of aboveground mangrove carbon stocks from WorldView-2 imagery based on generic and species-specific allometric equations," Remote Sens. Appl. Soc. Environ., vol. 26, p.100748, 2022.
DOI: 10.1016/j.rsase.2022.100748
Google Scholar
[8]
E. Purnamasari, M. Kamal, and P. Wicaksono, "Comparison of vegetation indices for estimating above-ground mangrove carbon stocks using PlanetScope image," Reg. Stud. Mar. Sci., vol. 44, p.101730, 2021.
DOI: 10.1016/j.rsma.2021.101730
Google Scholar
[9]
T. D. Pham et al., "Advances in Earth observation and machine learning for quantifying blue carbon," Earth-Science Rev., vol. 243, p.104501, 2023.
DOI: 10.1016/j.earscirev.2023.104501
Google Scholar
[10]
G. Bindu, P. Rajan, E. S. Jishnu, and K. Ajith Joseph, "Carbon stock assessment of mangroves using remote sensing and geographic information system," Egypt. J. Remote Sens. Sp. Sci., vol. 23, no. 1, p.1–9, 2020.
DOI: 10.1016/j.ejrs.2018.04.006
Google Scholar
[11]
Badan Standardisasi Nasional (BSN), "Pengukuran dan Penghitungan Cadangan Karbon–Pengukuran Lapangan untuk Penaksiran Cadangan Karbon Hutan (Akuntansi Karbon Hutan Berbasis Tanah)," p. https://bsn.go.id/main/berita/berita_det/3747/2-SN, 2012, [Online]. Available: https://bsn.go.id/.
DOI: 10.25077/1131206002
Google Scholar
[12]
Y. Xiao et al., "Geostatistical interpolation model selection based on ArcGIS and spatio ‑ temporal variability analysis of groundwater level in piedmont plains , northwest China," Springerplus, vol. 5, no. 425, p.1–15, 2016.
DOI: 10.1186/s40064-016-2073-0
Google Scholar
[13]
G. Garnero and D. Godone, "Comparisons between different interpolation techniques," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 40, no. 5W3, p.139–144, 2013.
DOI: 10.5194/isprsarchives-XL-5-W3-139-2013
Google Scholar
[14]
ESRI, "ArcGIS Pro Geoprocessing Tool Reference," 2023. .
Google Scholar
[15]
Nur'Eni, Jamidun, I. Setiawan, and N. M. Suaib, "Estimation of ordinary kriging parameters for determining characteristics and distribution of groundwater layer in Tondo area, Mantikulore district, Palu," J. Phys. Conf. Ser., vol. 1434, no. 1, p.0–8, 2020.
DOI: 10.1088/1742-6596/1434/1/012025
Google Scholar