[1]
Wan Nur Azrina Wan Muhammad, Zainuddin Sajuri, Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology Journal of Alloys and Compounds 509 (2011) 6021–6029.
DOI: 10.1016/j.jallcom.2011.02.153
Google Scholar
[2]
Yoshihiko Uematsu, Toshifumi Kakiuchi (2016) Effect of Grain Size on Fatigue Behavior in AZ61 Mg Alloys Fabricated by MDFing.
DOI: 10.2320/matertrans.MH201508
Google Scholar
[3]
S. Hwang, Nishimura, Mechanical milling of magnesium powder. Materials Science and Engineering A318 (2001) 22–33.
Google Scholar
[4]
Soo-MinBaeka,Hyeon,JuKimbHu,YoungJeongcSo-DamSohnaHyung-JoonShinaKyung-JinChoia, Effect of alloyed Ca on the microstructure and corrosion properties of extruded AZ61 Mg alloy.
DOI: 10.1016/j.corsci.2016.07.011
Google Scholar
[5]
Microstructural characterization and corrosion behavior of microwave-sintered magnesium alloy AZ61/fly ash microspheres syntactic foams. 2019 Apr 20.
DOI: 10.1016/j.heliyon.2019.e01531
Google Scholar
[6]
Yu Yan Han, Chen You,Effect of Mn Element Addition on the Microstructure, Mechanical Properties, and Corrosion Properties of Mg-3Zn-0.2Ca Alloy. Front. Mater., 10 December 2019.
DOI: 10.3389/fmats.2019.00324
Google Scholar
[7]
Chen Liu, Zheng Ren, Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Volume 2018 |Article ID 9216314.
Google Scholar
[8]
Yosuke Harai, Masaaki Kai, Kenji Kaneko, Microstructural and Mechanical Characteristics of AZ61 Magnesium Alloy Processed by High-Pressure Torsion. Materials Transactions, Vol. 49, No. 1 (2008) p.76 to 83.
DOI: 10.2320/matertrans.me200718
Google Scholar
[9]
Song-Jeng Huang, ChunChiu, Effect of equal channel angular pressing (ECAP) on hydrogen storage properties of commercial magnesium alloy AZ61. Volume 43, Issue 9, 1 March 2018, Pages 4371-4380.
DOI: 10.1016/j.ijhydene.2018.01.044
Google Scholar
[10]
J.A.del Valle, M.T. Pérez-Prado Accumulative roll bonding of a Mg-based AZ61 alloy. Volumes 410–411, 25 November 2005, Pages 353-357.
DOI: 10.1016/j.msea.2005.08.097
Google Scholar
[11]
C. Jihua ,C. Zhenhua ,Effects of Sn and Ca additions on microstructure, mechanical properties, and corrosion resistance of the as‐cast Mg‐Zn‐Al‐based alloy. Materials and corrosion Volume59, Issue12.
DOI: 10.1002/maco.200805010
Google Scholar
[12]
Sebastian Feliu (Jr), Amir A. El Hadad, Native Oxide Films on AZ31 and AZ61 Commercial Magnesium Alloys – Corrosion Behaviour, Effect on Isothermal Oxidation and Sol–gel Thin Film Formation.
DOI: 10.5772/60721
Google Scholar
[13]
Drahomír Dvorský,Jiří Kubásek,Structure, mechanical and corrosion properties of extruded Mg-Nd-Zn, Mg-Y-Zn and Mg-Y-Nd alloys. Journal Materials Science and Technology Volume 35, 2019 - Issue 5.
DOI: 10.1080/02670836.2019.1570680
Google Scholar
[14]
Lida Hou, Zhen Li, Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of As-Extruded Biodegradable Mg-3Sn-1Zn-0.5Mn Alloy. Journal of Materials Science & Technology, 2016, 32(9): 874-882.
DOI: 10.1016/j.jmst.2016.07.004
Google Scholar
[15]
Jun Chen, Quan-an Li, Qing Zhang, Xing-yuan Zhang,The Corrosion Behaviors of AZ61 Magnesium Alloy with the Ca Addition. Asia-Pacific Energy Equipment Engineering Research Conference (AP3ER 2015).
DOI: 10.2991/ap3er-15.2015.21
Google Scholar
[16]
Huai Yao, Jiuba Wen, Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg–Zn–Al–Ca alloys as biodegradable materials. DOI: 10.1016/j.jallcom.2014.04.059Corpus ID: 135842442.
DOI: 10.1016/j.jallcom.2014.04.059
Google Scholar
[17]
S.ManivannanaS arathy Kannan Gopalakrishnan, Effect of cerium addition on corrosion behavior of AZ61 + XCe alloy under salt spray test. Volume 55, Issue 1, March 2016, Pages 663-671.
DOI: 10.1016/j.aej.2015.10.010
Google Scholar
[18]
Ju-fujiang, ayingwang,Microstructure and mechanical properties of AZ61 magnesium alloy parts achieved by thixo-extruding semisolid billets prepared by new SIMA. Volume 23, Issue 3, March 2013, Pages 576-585.
DOI: 10.1016/s1003-6326(13)62502-9
Google Scholar
[19]
Y ue Sheng Chai Li Na Wang, Corrosion Behavior of AZ61 Magnesium Alloys in NaCl Solution.
DOI: 10.4028/www.scientific.net/AMR.239-242.2240
Google Scholar
[20]
LiLi, Nguyen DangNam,Effect of yttrium on corrosion behavior of extruded AZ61 Mg alloy. Volume 4, Issue 1, March 2016, Pages 44-51.
Google Scholar
[21]
Hua Huang, Guangyin Yuan, Zhenhua Chu, Wenjiang Din, Microstructure and mechanical properties of double continuously extruded Mg–Zn–Gd-based magnesium alloys. Volume 560, 10 January 2013, Pages 241-248.
DOI: 10.1016/j.msea.2012.09.063
Google Scholar
[22]
Md. Shahnewaz Bhuiyana, Yoshiharu Mutoh, Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments. International Journal of Fatigue 30 (2008) 1756–1765.
DOI: 10.1016/j.ijfatigue.2008.02.012
Google Scholar
[23]
J. vutbr.cz, A. Němcová, M. Zmrzlý Improvement of corrosion resistance of AZ61 magnesium alloy. Koroze a ochrana materialu Volume 56: Issue 4.
DOI: 10.2478/v10227-011-0017-4
Google Scholar
[24]
S. Manivannan . P. Dinesh ,Investigation and corrosion performance of cast mg–6al–1zn + xca alloy under salt spray test (astm-b117). Academic research paper on "Materials engineering".
DOI: 10.1016/j.jma.2015.02.002
Google Scholar
[25]
S. SugiyamaJ. L. KuoS. H. HsiangJ. Yanagimoto, Semisolid Extrusion of Wrought Magnesium Alloy AZ61 and Its Mechanical Properties. Proceedings of the 35th International MATADOR Conference pp.115-118.
DOI: 10.1007/978-1-84628-988-0_25
Google Scholar
[26]
Yonggang Li, Yinghui Wei, Corrosion behavior of intermetallic compound Mg17Al12 coatings in sodium chloride solutions. Science Paper Online 2012; 7 (2): 154-159.
Google Scholar
[27]
Maria Zinkova, Frantisek, Jakub, Influence of spark plasma sintering on microstructure and corrosion behaviour of WN43 magnesium alloy for Biomaterials https://doi.org/10.37904/ metal.2019.743
DOI: 10.37904/metal.2019.743
Google Scholar