[1]
Alloying: Understanding the Basics J.R. Davis, "Aluminum and Aluminum Alloys" ASM International, pp.351-416, 2001.
DOI: 10.31399/asm.tb.aub.t61170351
Google Scholar
[2]
J. Gilbert Kaufman, "Understanding Wrought and Cast Aluminum Alloys Designations" Chapter 3, Introduction to Aluminum Alloys and Tempers- ASM, pp.23-37, 2000.
Google Scholar
[3]
J. C. Benedyk, "Aluminum alloys for lightweight automotive structures," Illinois Institute of Technology,Woodhead Publishing Limited, pp.79-113, (2010)
Google Scholar
[4]
M. Imran and A.R. Anwar Khan, "Characterization of Al-7075 metal matrix composites: a review," Journal of Materials research and Technology, pp.3347-3356, (2019)
DOI: 10.1016/j.jmrt.2017.10.012
Google Scholar
[5]
Tracy J. Smith "Modeling high-temperature stress-strain behavior of cast aluminum alloys", Metallurgical And Materials Transactions A 134—Volume 30a, January 1999.
Google Scholar
[6]
Murat Tiryakio ˘glu; "Intrinsic and Extrinsic Effects of Microstructure on Properties in Cast Al Alloys", Materials 2020, 13, 2019;
DOI: 10.3390/ma13092019
Google Scholar
[7]
J. Gilbert Kaufman , Elwin L. Rooy; "Aluminum Alloy Castings: Properties, Processes, and Applications", ISBN: 0-87170-803-5, 2004 ASM Internationa
Google Scholar
[8]
Roger Lumley; "Fundamentals of aluminium metallurgy Production, processing and applications", Woodhead Publishing Limited, ISBN 978-1-84569-654-2
Google Scholar
[9]
Hans Ivar Laukli, "High Pressure Die Casting of Aluminium and Magnesium Alloys Grain Structure and Segregation Characteristics", A thesis submitted to Norwegian University of Science and Technology (NTNU)- (2004)
Google Scholar
[10]
Ghader Faraji, H.S. Kim, Hessam Torabzadeh Kashi, "Severe Plastic Deformation, Methods, Processing and Properties" ISBN: 9780128135679, 0128135670 P1 (2018)
Google Scholar
[11]
E. Hall: Proc. Phys. Soc., 1951, vol. 64, p.747.
Google Scholar
[12]
N. Petch: J. Iron Steel Inst., 1953, vol. 174, p.25–28.
Google Scholar
[13]
Hossein Izadi, "Grain Growth Behavior and Hall–Petch Strengthening in Friction Stir Processed Al 5059" The Minerals, Metals & Materials Society and ASM International 2014, Volume 45A, November 2014—P5635-5643
DOI: 10.1007/s11661-014-2492-x
Google Scholar
[14]
Heinz G. F. Wilsdoff and Doris Kuhlmann-Wilsdoff, "Work softening and Hall-Petch hardening in extruded mechanically alloyed alloys", Materials Science and Engineering, A 164, 1994, PP 1-14
DOI: 10.1016/0921-5093(93)90638-u
Google Scholar
[15]
Aicha Loucif, Roberto B. Figueiredo, "Ultrafine grains and the Hall-petch relationship in an Al-Mg-Si alloy processed by high pressure torsion", Materials Science and Engineering A 532 (2012) PP139–145
DOI: 10.1016/j.msea.2011.10.074
Google Scholar
[16]
Ren-Guo Guan, Di Tie, "A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects" The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2017.
Google Scholar
[17]
Shell Internationale Research Maatschappij B.V, Carel van Bylandtlaan "Aluminium-strontium master alloy", EUROPEAN PATENT 0 398 449 A1, (1990)
Google Scholar
[18]
Procédé De Raffineur De Grain Des Alliages D'aluminium"Grain Refining Method For Aluminium Alloys", EUROPEAN PATENT EP 3 247 812 B1, (2019)
Google Scholar
[19]
Mattheus Vader; "Aluminium-Strontium Master Alloy" United States Patent 5,045,110, Sep. 3, (1991)
Google Scholar
[20]
Vian, Wei Dai, "On the grain refinement of aluminum alloys" (2016). Open Access Dissertations. 1405: Doctor of Philosophy Purdue University 2016.
Google Scholar
[21]
Zhi-Hong Jia; "Hafnium in Aluminum Alloys: A Review", Acta Metall. Sin. (Engl. Lett.), 2016, 29(2), 105–119
Google Scholar
[22]
K.T Kashyap, T.Chandrashekar "Effects and mechanisms of grain refinement in aluminium alloys", "Indian Academy of Sciences", Bull. Mater. Sci., Vol. 24, No. 4, August 2001, p.345–353.
DOI: 10.1007/bf02708630
Google Scholar
[23]
Mark Easton And David Stjohn "An Analysis of the Relationship between Grain Size, Solute Content, and the Potency and Number Density of Nucleant Particles" Metall. Mater. Trans.A30 1613 Volume 36a, July 2005—(1911)
DOI: 10.1007/s11661-005-0054-y
Google Scholar
[24]
M.A. Easton and D.H. StJohn: "Grain Refinement of Aluminum Alloys: Part I. The Nucleant and Solute Paradigms—A Review of the Literature" Metall. Mater. Trans. A, 1999, vol. 30A, pp.1613-23.
DOI: 10.1007/s11661-999-0098-5
Google Scholar
[25]
S.A Kori, B.S Murty, M.chakraborty "Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium", Materials Science and Engineering A283 (2000) 94–104
DOI: 10.1016/s0921-5093(99)00794-7
Google Scholar
[26]
Anne Zulfia Syahrial "Effect of Strontium on The Microstructure and Mechanical Properties of Aluminium ADC12/Nano-SiC Composite with Al-5TiB Grain Refiner by Stir Casting Method" IOP MRX-112112.R2 2019 Mater. Res
DOI: 10.1088/2053-1591/ab0a49
Google Scholar
[27]
A.M. Samuel; "Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys", Materials and Design 56 (2014) 264–273
DOI: 10.1016/j.matdes.2013.10.029
Google Scholar
[28]
W. Schneider (Sp) et.al "Solidification processing of foundary alloys: Mechanism of grain refinement of aluminium- Almost all you need to know", Aluminium Alloys The Physical and Mechanical Properties", 2008, Page 283: 392.
Google Scholar
[29]
Fereshte Ghorbani, Massoud Emamy, Hamed Mirzadeh, "Enhanced tensile properties of as‑cast Mg‑10Al magnesium alloy via strontium addition and hot working" Archives of Civil and Mechanical Engineering (2021) 21:86;.
DOI: 10.1007/s43452-021-00241-3
Google Scholar
[30]
C.M. Dinnis, M.O. Otte, A.K. Dahle, and J.A. Taylor; "The Influence of Strontium on Porosity Formation in Al-Si Alloys", Metallurgical And Materials Transactions A volume 35a, November 2004—PP 3531-3541
DOI: 10.1007/s11661-004-0190-9
Google Scholar
[31]
H. Miura, T. Maruoka, X. Yang, J.J. Jonas; "Microstructure and mechanical properties of multi-directionally forged Mg–Al–Zn alloy", Scr. Mater. 66 (2012) 49–51.
DOI: 10.1016/j.scriptamat.2011.10.005
Google Scholar
[32]
R. Sampath, H.S. Nayaka, K.R. Gopi, S. Sahu, U.B. Kuruveri, "Investigation of microstructure and mechanical properties of the Cu–3% Ti alloy processed by multiaxial cryo-forging", J. Mater.Res. (2018) 3700–3710.
DOI: 10.1557/jmr.2018.253
Google Scholar
[33]
Ramesh S, H. Shivananda Nayaka et al; "Effect of multiaxial cryoforging on microstructure and mechanical properties of a Cu-Ti Alloy", 2019 Mater. Res. Express 6 026556
DOI: 10.1088/2053-1591/aaf085
Google Scholar
[34]
S. Ramesh, G. Anne and H.S. Nayaka et al; "Investigation of dry sliding wear properties of multi-directional forged Mg–Zn alloys", Journal of Magnesium and Alloys 7 (2019) 444–455
DOI: 10.1016/j.jma.2019.05.008
Google Scholar
[35]
Sudheer S. Sajjan et al; "Mechanical and Microstructural Properties of Multi-Axially Forged LM6 Aluminium Alloy", DOI: 10.1007/978-981-13-6374-0_16, (2019)
Google Scholar
[36]
S Sudheer S. Sajjan et al; "Evaluation of Microstructure and Mechanical Properties of Multi Axial Forged LM2 Aluminum Alloy", DOI: 10.1007/978-981-13-6374-0_16, 2019.
DOI: 10.4028/www.scientific.net/msf.969.297
Google Scholar
[37]
S Sudheer S. Sajjan et al; "Effect of Mechanical Properties of Multi Axially Forged LM4 Aluminum Alloy", Materials Today: Proceedings 24 (2020) 1462-1467.
DOI: 10.1016/j.matpr.2020.04.465
Google Scholar
[38]
S. Ramesh et al; "Influence of Multidirectional Forging on Microstructural, Mechanical, and Corrosion Behavior of Mg-Zn Alloy", Journal of Materials Engineering and Performance, ASM International 1059-9495, DOI: 10.1007/s11665-019-04007-0, (2019)
DOI: 10.1007/s11665-019-04007-0
Google Scholar
[39]
M.Kciuk, A. Kurc-Lisiecka, The influence of heat treatment on structure, mechanical properties and corrosion resistance of steel X10CrNi18-8, Archives of Mat. Sci. and Eng. 55 (2012) 62-69
Google Scholar
[40]
W. Walke, E. Hadasik, J. Przondziono, D. Kuc, I.Bednarczyk, G.Niewielski, Plasticity and corrosion resistance of magnesium alloy WE43, Archives of Mat. Sci. and Eng. 51 (2011)16-24
Google Scholar
[41]
B. Han, Z. Xu, "Grain refinement under multi-axial forging in Fe–32%Ni alloy", Journal of Alloys and Compounds 457 (2008) 279–285
DOI: 10.1016/j.jallcom.2007.03.067
Google Scholar
[42]
S. Zherebtsov et al. "Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging", Materials Science and Engineering A 536 (2012) 190–196
DOI: 10.1016/j.msea.2011.12.102
Google Scholar
[43]
Q. Chen et al. "Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure", Materials Science and Engineering A 541 (2012) 98–104
DOI: 10.1016/j.msea.2012.02.009
Google Scholar
[44]
R. Kapoor et al. "Softening of Al during multi-axial forging in a channel die", Materials Science & Engineering A 560 (2013) 404-412
DOI: 10.1016/j.msea.2012.09.085
Google Scholar
[45]
Xiang-sheng XIA, et al, "Microstructure and mechanical properties of isothermal multi-axial forging formed AZ61 Mg alloy", Trans. Nonferrous Met. Soc. China 23(2013) 31863192
DOI: 10.1016/s1003-6326(13)62851-4
Google Scholar
[46]
Hong-ying LI et al. "Grain refinement mechanism of as-cast aluminum by hafnium", DOI: 10.1016/S1003-6326(16)64438-2, "Trans. Nonferrous Met. Soc. China 26(2016) 3059−3069".
DOI: 10.1016/s1003-6326(16)64438-2
Google Scholar
[47]
Jerry H. Sokolowski; "Improvement of 319 aluminum alloy casting durability by high temperature solution treatment", J.H. Sokolowski et al. / Journal of Materials Processing Technology 109 (2001) 174-180.
DOI: 10.1016/s0924-0136(00)00793-7
Google Scholar
[48]
Jun Du; "Effect of strontium on the grain refining efficiency of Mg–3Al alloy refined by carbon inoculation", J. Du et al. / Journal of Alloys and Compounds 470 (2009) 228–232.
DOI: 10.1016/j.jallcom.2008.03.012
Google Scholar
[49]
M. Timpel; "The role of strontium in modifying aluminium–silicon alloys", M. Timpel et al. / Acta Materialia 60 (2012) 3920-3928
DOI: 10.1016/j.actamat.2012.03.031
Google Scholar
[50]
L.O. Mudashiru et. Al./ "Effect of Strontium on Microstructure and Mechanical Properties Al-7Si-0.2Cu Alloys", International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 ISSN 2229-5518.
Google Scholar
[51]
B. Closset, H. Dugas, M. Pekguleryuz, and J. E. Gruzleski; "The aluminum-strontium phase diagram", Metallurgical Transactions A 1250 - 1253, Volume 17A July 1986.
DOI: 10.1007/bf02665326
Google Scholar
[52]
V. G. Davydov et al./ "Alloying Aluminum Alloys and Zirconium Additives with Scandium", "Nonferrous Metals And Alloys, Metal Science and Heat Treatment, ~bl. 38, Nos. 7 - 8, 1996".
DOI: 10.1007/bf01395323
Google Scholar
[53]
Håkon Hallem "Precipitation behaviour and recrystallisation resistance in aluminium alloys with additions of hafnium, scandium and zirconium", A thesis submitted to The Norwegian University of Science and Technology (NTNU) 2005.
Google Scholar
[54]
B. Kulunk and D.J. Zuliani ; "Applications for the Strontium Treatment of Wrought and Die-Cast AI", Australasia-Pacific Forum On Intelligent Processing And Manufacturing Of Materials (Ipmm '1997) JOM • October 1996.
DOI: 10.1007/bf03223107
Google Scholar
[55]
İsmailÖztürk et al./", "Effects of strontium addition on the microstructure and corrosion behavior of A356 aluminum alloy", Journal of Alloys and Compounds, Volume 763, 30 September 2018, Pages 384-391.
DOI: 10.1016/j.jallcom.2018.05.341
Google Scholar
[56]
GAO Zhao-he, LI Hong-ying, LAI Yong-qiu, OU Yang-xun, LI De-wang. Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum [J]. Materials Science and Engineering A, 2013, 580: 92−98
DOI: 10.1016/j.msea.2013.05.035
Google Scholar
[57]
G.A. Manjunath, S. Shivakumar, S. P. Avadhani et al., Investigation of mechanical properties and microstructural behavior of 7050 aluminium alloy by multi directional forging technique, Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2020.02.001
Google Scholar
[58]
G.A. Manjunath, S. Shivakumar, R. Fernandez et al., A review on effect of multi-directional forging/multi-axial forging on mechanical and microstructural properties of aluminum alloy, Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2021.05.056
Google Scholar