[1]
K.E. Evans, and A. Alderson, Auxetic materials: functional materials and structures from lateral thinking! Advanced materials, 12(9) (2000) 617-628.
DOI: 10.1002/(sici)1521-4095(200005)12:9<617::aid-adma617>3.0.co;2-3
Google Scholar
[2]
A. Bezazi, and F. Scarpa, Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of fatigue, 29(5) (2007) 922-930.
DOI: 10.1016/j.ijfatigue.2006.07.015
Google Scholar
[3]
J.N. Grima, P.S. Farrugia, R. Gatt, D. Attard, On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi (B) Basic Res, 245(3) (2008) 521–529.
DOI: 10.1002/pssb.200777705
Google Scholar
[4]
A. Alderson, and K.L. Alderson, Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4) (2007) 565–575.
DOI: 10.1243/09544100jaero185
Google Scholar
[5]
M. Mariam, N.A. Murtaza, S. Javaria, A. Umar. Review of mechanics and applications of auxetic structures. Advances in Materials Science and Engineering (2014) 753496.
Google Scholar
[6]
F. Scarpa, S. Blain, T. Lew, D. Perrott, M. Ruzzene, and J.R. Yates, Elastic buckling of hexagonal chiral cell honeycombs. Composites Part A: Applied Science and Manufacturing, 38(2) (2007) 280-289.
DOI: 10.1016/j.compositesa.2006.04.007
Google Scholar
[7]
R. Lakes, Deformation mechanisms in negative Poisson's ratio materials: structural aspects. Journal of materials science, 26(9) (1991) 2287-2292.
DOI: 10.1007/bf01130170
Google Scholar
[8]
L.J Gibson, and M.F. Ashby, Cellular solids: structure and properties. Cambridge University Press, Cambridge, UK (1997).
Google Scholar
[9]
A. Alderson, K.L. Alderson, D. Attard, K.E. Evans, R. Gatt, J.N. Grima, K. Zied, Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70(7) (2010) 1042-1048.
DOI: 10.1016/j.compscitech.2009.07.009
Google Scholar
[10]
M.R. An, L. Wang, H.T. Liu, F.G. Ren, In-plane crushing response of a novel bidirectional re-entrant honeycomb with two plateau stress regions. Thin-Walled Structures, 170 (2022) 108530.
DOI: 10.1016/j.tws.2021.108530
Google Scholar
[11]
H. Wang, Z. Lu, Z. Yang, X. Li, In-plane dynamic crushing behaviours of a novel auxetic honeycomb with two plateau stress regions. International Journal of Mechanical Sciences, 151 (2019) 746-759.
DOI: 10.1016/j.ijmecsci.2018.12.009
Google Scholar
[12]
D. Zhang, Q. Fei, J. Liu, D. Jiang, Y. Li, Crushing of vertex-based hierarchical honeycombs with triangular substructures. Thin-Walled Structures, 146 (2020) 106436.
DOI: 10.1016/j.tws.2019.106436
Google Scholar
[13]
H. Liang, Q. Wang, Y. Pu, Y. Zhao, F. Ma, In-plane compressive behaviour of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness. International Journal of Mechanical Sciences, 209 (2021) 106723.
DOI: 10.1016/j.ijmecsci.2021.106723
Google Scholar
[14]
M.H. Fu, Y. Chen, L.L. Hu, A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Composite Structures, 160 (2017) 574-585.
DOI: 10.1016/j.compstruct.2016.10.090
Google Scholar
[15]
A. Alomarah, S. Xu, S.H. Masood, D. Ruan, Dynamic performance of auxetic structures: experiments and simulation. Smart Materials and Structures, 29(5) (2020) 055031.
DOI: 10.1088/1361-665x/ab79bb
Google Scholar
[16]
Q. He, J. Feng, H. Zhou, A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs. Mechanics of Materials, 138 (2019) 103151.
DOI: 10.1016/j.mechmat.2019.103151
Google Scholar
[17]
L. Wei, X. Zhao, Q. Yu, G. Zhu, A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin-Walled Structures, 149 (2020) 106623.
DOI: 10.1016/j.tws.2020.106623
Google Scholar
[18]
L. Shen, Z. Wang, X. Wang, K. Wei, Negative Poisson's ratio and effective Young's modulus of a vertex-based hierarchical re-entrant honeycomb structure. International Journal of Mechanical Sciences, 206 (2021) 106611.
DOI: 10.1016/j.ijmecsci.2021.106611
Google Scholar
[19]
Y. Chen, T. Li, Z. Jia, F. Scarpa, C.W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials & Design, 137 (2018) 226-234.
DOI: 10.1016/j.matdes.2017.10.028
Google Scholar
[20]
K. Meena, S. Singamneni, Novel hybrid auxetic structures for improved in-plane mechanical properties via additive manufacturing. Mechanics of Materials, 158 (2021) 103890.
DOI: 10.1016/j.mechmat.2021.103890
Google Scholar
[21]
D. Li, J. Yin, L. Dong, R.S. Lakes, Strong re-entrant cellular structures with negative Poisson's ratio. Journal of materials science, 53(5) (2018) 3493-3499.
DOI: 10.1007/s10853-017-1809-8
Google Scholar
[22]
Y. Chen, M.H. Fu, Design and modelling of a combined embedded enhanced honeycomb with tuneable mechanical properties. Applied Composite Materials, 25(5) (2018) 1041-1055.
DOI: 10.1007/s10443-017-9650-4
Google Scholar
[23]
A. Alomarah, D. Ruan, S. Masood, I. Sbarski, B. Faisal, An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. The International Journal of Advanced Manufacturing Technology, 96(5) (2018) 2013-2029.
DOI: 10.1007/s00170-018-1605-x
Google Scholar
[24]
X.L. Ruan, J.J. Li, X.K. Song, H.J. Zhou, W.X. Yuan, W.W. Wu, R. Xia, Mechanical design of antichiral-reentrant hybrid intravascular stent. International Journal of Applied Mechanics, 10(10) (2018) 1850105.
DOI: 10.1142/s1758825118501053
Google Scholar
[25]
Y. Jiang, Y. Li, 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Scientific reports, 8(1) (2018) 1-11.
DOI: 10.1038/s41598-018-20795-2
Google Scholar
[26]
M. Gong, C. Tao, C. Zhang, H. Ji, J. Qiu, A method for regulating negative Poisson's ratio by a re-entrant anti-tetra chiral structure. Mechanics of Advanced Materials and Structures (2021) 1-16.
DOI: 10.1080/15376494.2023.2289178
Google Scholar
[27]
Z. Zhang, R. Tian, X. Zhang, F. Wei, X. Yang, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Journal of Materials Science, 56(25) (2021) 14139-14156.
Google Scholar
[28]
H. Lu, X. Wang, T. Chen, In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption. Thin-Walled Structures, 160 (2021)107366.
DOI: 10.1016/j.tws.2020.107366
Google Scholar
[29]
L. Wei, X. Zhao, Q. Yu, W. Zhang, G. Zhu, In-plane compression behaviours of the auxetic star honeycomb: Experimental and numerical simulation. Aerospace Science and Technology, 115 (2021) 106797.
DOI: 10.1016/j.ast.2021.106797
Google Scholar
[30]
G. Sun, H. Jiang, J. Fang, G. Li, Q. Li, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Materials & Design, 110 (2016) 705-719.
DOI: 10.1016/j.matdes.2016.08.032
Google Scholar
[31]
R. Oftadeh, B. Haghpanah, J. Papadopoulos, A.M.S. Hamouda, H.N. Hashemi, A. Vaziri, Mechanics of anisotropic hierarchical honeycombs. International Journal of Mechanical Sciences, 81 (2014) 126-136.
DOI: 10.1016/j.ijmecsci.2014.02.011
Google Scholar
[32]
Y. Tao, W. Li, K. Wei, S. Duan, W. Wen, L. Chen, Y. Pei, D. Fang, Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Composites Part B: Engineering, 176 (2019) 107219.
DOI: 10.1016/j.compositesb.2019.107219
Google Scholar
[33]
J. Qiao, C. Chen, In-plane crushing of a hierarchical honeycomb. International Journal of Solids and Structures, 85 (2016) 57-66.
DOI: 10.1016/j.ijsolstr.2016.02.003
Google Scholar
[34]
W. Wu, Y. Tao, Y. Xia, J. Chen, H. Lei, L. Sun, D. Fang, Mechanical properties of hierarchical anti-tetra chiral meta structures. Extreme Mechanics Letters, 16 (2017) 18-32.
DOI: 10.1016/j.eml.2017.08.004
Google Scholar
[35]
J. Fang, G. Sun, N. Qiu, T. Pang, S. Li, Q. Li, On hierarchical honeycombs under out-of-plane crushing. International Journal of Solids and Structures, 135 (2018) 1-13.
DOI: 10.1016/j.ijsolstr.2017.08.013
Google Scholar
[36]
H.T. Xue, H.L. Tan, T. Chen, Z.C. He, E. Li, Q.Q. Li, B. Xu, Energy absorption characteristics and multi-objective optimization of a novel re-entrant hierarchical honeycomb bumper system. Mechanics of Advanced Materials and Structures, 30(19) (2023) 3923-3936.
DOI: 10.1080/15376494.2022.2085826
Google Scholar
[37]
H.L. Tan, Z.C. He, E. Li, X.W. Tan, A.G. Cheng, Q.Q. Li, Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores. Aerospace Science and Technology, 106 (2020) 106073.
DOI: 10.1016/j.ast.2020.106073
Google Scholar
[38]
A.H. Tajalsir, K.B. Mustapha, T. Ibn-Mohammed, Numerical and random forest modelling of the impact response of hierarchical auxetic structures. Materials Today Communications, 31 (2022) 103797.
DOI: 10.1016/j.mtcomm.2022.103797
Google Scholar
[39]
M. Xu, Z. Zhao, P. Wang, S. Duan, H. Lei, D. Fang, Mechanical performance of bio-inspired hierarchical honeycomb metamaterials. International Journal of Solids and Structures, (2022) 111866.
DOI: 10.1016/j.ijsolstr.2022.111866
Google Scholar