Additively Manufactured Hybrid and Hierarchical Auxetic Structures: A Review

Article Preview

Abstract:

Auxetic structures have gained extensive popularity because of their unique mechanical properties such as negative Poisson’s ratio, high strength to weight ratio, energy absorption capabilities, high shear modulus and vibro-acoustic properties. These structures are widely used in automotive shock absorbers, crash box, fasteners, sound absorbers, air seat cushions, and biomedical applications. Over the last few years, additive manufacturing (AM) techniques are widely used for fabrication of these structures. conventional auxetic structures possess limited plateau stress and energy absorption. In order to overcome limitation of conventional auxetic structures, various researchers have proposed hybrid and hierarchical auxetic structures and investigated mechanical properties and energy absorption capacity. The present paper describes a detailed literature review on mechanical properties and energy absorption capacity of additively manufactured hybrid and hierarchical auxetic structures under static and dynamic loading conditions. Further, there is a need of conducting experimental study on these structures for improving mechanical properties such as strength, stiffness and energy absorption capacity. There is enough scope of designing and studying deformation behaviour of hybrid hierarchical structures for maximizing mechanical properties under different static and dynamic loading conditions for specific application.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 22)

Pages:

21-28

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.E. Evans, and A. Alderson, Auxetic materials: functional materials and structures from lateral thinking! Advanced materials, 12(9) (2000) 617-628.

DOI: 10.1002/(sici)1521-4095(200005)12:9<617::aid-adma617>3.0.co;2-3

Google Scholar

[2] A. Bezazi, and F. Scarpa, Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of fatigue, 29(5) (2007) 922-930.

DOI: 10.1016/j.ijfatigue.2006.07.015

Google Scholar

[3] J.N. Grima, P.S. Farrugia, R. Gatt, D. Attard, On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi (B) Basic Res, 245(3) (2008) 521–529.

DOI: 10.1002/pssb.200777705

Google Scholar

[4] A. Alderson, and K.L. Alderson, Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4) (2007) 565–575.

DOI: 10.1243/09544100jaero185

Google Scholar

[5] M. Mariam, N.A. Murtaza, S. Javaria, A. Umar. Review of mechanics and applications of auxetic structures. Advances in Materials Science and Engineering (2014) 753496.

Google Scholar

[6] F. Scarpa, S. Blain, T. Lew, D. Perrott, M. Ruzzene, and J.R. Yates, Elastic buckling of hexagonal chiral cell honeycombs. Composites Part A: Applied Science and Manufacturing, 38(2) (2007) 280-289.

DOI: 10.1016/j.compositesa.2006.04.007

Google Scholar

[7] R. Lakes, Deformation mechanisms in negative Poisson's ratio materials: structural aspects. Journal of materials science, 26(9) (1991) 2287-2292.

DOI: 10.1007/bf01130170

Google Scholar

[8] L.J Gibson, and M.F. Ashby, Cellular solids: structure and properties. Cambridge University Press, Cambridge, UK (1997).

Google Scholar

[9] A. Alderson, K.L. Alderson, D. Attard, K.E. Evans, R. Gatt, J.N. Grima, K. Zied, Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70(7) (2010) 1042-1048.

DOI: 10.1016/j.compscitech.2009.07.009

Google Scholar

[10] M.R. An, L. Wang, H.T. Liu, F.G. Ren, In-plane crushing response of a novel bidirectional re-entrant honeycomb with two plateau stress regions. Thin-Walled Structures, 170 (2022) 108530.

DOI: 10.1016/j.tws.2021.108530

Google Scholar

[11] H. Wang, Z. Lu, Z. Yang, X. Li, In-plane dynamic crushing behaviours of a novel auxetic honeycomb with two plateau stress regions. International Journal of Mechanical Sciences, 151 (2019) 746-759.

DOI: 10.1016/j.ijmecsci.2018.12.009

Google Scholar

[12] D. Zhang, Q. Fei, J. Liu, D. Jiang, Y. Li, Crushing of vertex-based hierarchical honeycombs with triangular substructures. Thin-Walled Structures, 146 (2020) 106436.

DOI: 10.1016/j.tws.2019.106436

Google Scholar

[13] H. Liang, Q. Wang, Y. Pu, Y. Zhao, F. Ma, In-plane compressive behaviour of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness. International Journal of Mechanical Sciences, 209 (2021) 106723.

DOI: 10.1016/j.ijmecsci.2021.106723

Google Scholar

[14] M.H. Fu, Y. Chen, L.L. Hu, A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Composite Structures, 160 (2017) 574-585.

DOI: 10.1016/j.compstruct.2016.10.090

Google Scholar

[15] A. Alomarah, S. Xu, S.H. Masood, D. Ruan, Dynamic performance of auxetic structures: experiments and simulation. Smart Materials and Structures, 29(5) (2020) 055031.

DOI: 10.1088/1361-665x/ab79bb

Google Scholar

[16] Q. He, J. Feng, H. Zhou, A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs. Mechanics of Materials, 138 (2019) 103151.

DOI: 10.1016/j.mechmat.2019.103151

Google Scholar

[17] L. Wei, X. Zhao, Q. Yu, G. Zhu, A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin-Walled Structures, 149 (2020) 106623.

DOI: 10.1016/j.tws.2020.106623

Google Scholar

[18] L. Shen, Z. Wang, X. Wang, K. Wei, Negative Poisson's ratio and effective Young's modulus of a vertex-based hierarchical re-entrant honeycomb structure. International Journal of Mechanical Sciences, 206 (2021) 106611.

DOI: 10.1016/j.ijmecsci.2021.106611

Google Scholar

[19] Y. Chen, T. Li, Z. Jia, F. Scarpa, C.W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials & Design, 137 (2018) 226-234.

DOI: 10.1016/j.matdes.2017.10.028

Google Scholar

[20] K. Meena, S. Singamneni, Novel hybrid auxetic structures for improved in-plane mechanical properties via additive manufacturing. Mechanics of Materials, 158 (2021) 103890.

DOI: 10.1016/j.mechmat.2021.103890

Google Scholar

[21] D. Li, J. Yin, L. Dong, R.S. Lakes, Strong re-entrant cellular structures with negative Poisson's ratio. Journal of materials science, 53(5) (2018) 3493-3499.

DOI: 10.1007/s10853-017-1809-8

Google Scholar

[22] Y. Chen, M.H. Fu, Design and modelling of a combined embedded enhanced honeycomb with tuneable mechanical properties. Applied Composite Materials, 25(5) (2018) 1041-1055.

DOI: 10.1007/s10443-017-9650-4

Google Scholar

[23] A. Alomarah, D. Ruan, S. Masood, I. Sbarski, B. Faisal, An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. The International Journal of Advanced Manufacturing Technology, 96(5) (2018) 2013-2029.

DOI: 10.1007/s00170-018-1605-x

Google Scholar

[24] X.L. Ruan, J.J. Li, X.K. Song, H.J. Zhou, W.X. Yuan, W.W. Wu, R. Xia, Mechanical design of antichiral-reentrant hybrid intravascular stent. International Journal of Applied Mechanics, 10(10) (2018) 1850105.

DOI: 10.1142/s1758825118501053

Google Scholar

[25] Y. Jiang, Y. Li, 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Scientific reports, 8(1) (2018) 1-11.

DOI: 10.1038/s41598-018-20795-2

Google Scholar

[26] M. Gong, C. Tao, C. Zhang, H. Ji, J. Qiu, A method for regulating negative Poisson's ratio by a re-entrant anti-tetra chiral structure. Mechanics of Advanced Materials and Structures (2021) 1-16.

DOI: 10.1080/15376494.2023.2289178

Google Scholar

[27] Z. Zhang, R. Tian, X. Zhang, F. Wei, X. Yang, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Journal of Materials Science, 56(25) (2021) 14139-14156.

Google Scholar

[28] H. Lu, X. Wang, T. Chen, In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption. Thin-Walled Structures, 160 (2021)107366.

DOI: 10.1016/j.tws.2020.107366

Google Scholar

[29] L. Wei, X. Zhao, Q. Yu, W. Zhang, G. Zhu, In-plane compression behaviours of the auxetic star honeycomb: Experimental and numerical simulation. Aerospace Science and Technology, 115 (2021) 106797.

DOI: 10.1016/j.ast.2021.106797

Google Scholar

[30] G. Sun, H. Jiang, J. Fang, G. Li, Q. Li, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Materials & Design, 110 (2016) 705-719.

DOI: 10.1016/j.matdes.2016.08.032

Google Scholar

[31] R. Oftadeh, B. Haghpanah, J. Papadopoulos, A.M.S. Hamouda, H.N. Hashemi, A. Vaziri, Mechanics of anisotropic hierarchical honeycombs. International Journal of Mechanical Sciences, 81 (2014) 126-136.

DOI: 10.1016/j.ijmecsci.2014.02.011

Google Scholar

[32] Y. Tao, W. Li, K. Wei, S. Duan, W. Wen, L. Chen, Y. Pei, D. Fang, Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Composites Part B: Engineering, 176 (2019) 107219.

DOI: 10.1016/j.compositesb.2019.107219

Google Scholar

[33] J. Qiao, C. Chen, In-plane crushing of a hierarchical honeycomb. International Journal of Solids and Structures, 85 (2016) 57-66.

DOI: 10.1016/j.ijsolstr.2016.02.003

Google Scholar

[34] W. Wu, Y. Tao, Y. Xia, J. Chen, H. Lei, L. Sun, D. Fang, Mechanical properties of hierarchical anti-tetra chiral meta structures. Extreme Mechanics Letters, 16 (2017) 18-32.

DOI: 10.1016/j.eml.2017.08.004

Google Scholar

[35] J. Fang, G. Sun, N. Qiu, T. Pang, S. Li, Q. Li, On hierarchical honeycombs under out-of-plane crushing. International Journal of Solids and Structures, 135 (2018) 1-13.

DOI: 10.1016/j.ijsolstr.2017.08.013

Google Scholar

[36] H.T. Xue, H.L. Tan, T. Chen, Z.C. He, E. Li, Q.Q. Li, B. Xu, Energy absorption characteristics and multi-objective optimization of a novel re-entrant hierarchical honeycomb bumper system. Mechanics of Advanced Materials and Structures, 30(19) (2023) 3923-3936.

DOI: 10.1080/15376494.2022.2085826

Google Scholar

[37] H.L. Tan, Z.C. He, E. Li, X.W. Tan, A.G. Cheng, Q.Q. Li, Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores. Aerospace Science and Technology, 106 (2020) 106073.

DOI: 10.1016/j.ast.2020.106073

Google Scholar

[38] A.H. Tajalsir, K.B. Mustapha, T. Ibn-Mohammed, Numerical and random forest modelling of the impact response of hierarchical auxetic structures. Materials Today Communications, 31 (2022) 103797.

DOI: 10.1016/j.mtcomm.2022.103797

Google Scholar

[39] M. Xu, Z. Zhao, P. Wang, S. Duan, H. Lei, D. Fang, Mechanical performance of bio-inspired hierarchical honeycomb metamaterials. International Journal of Solids and Structures, (2022) 111866.

DOI: 10.1016/j.ijsolstr.2022.111866

Google Scholar