[1]
Ó. Teixeira, F.J.G. Silva, E. Atzeni, Residual stresses and heat treatments of Inconel 718 parts manufactured via metal laser beam powder bed fusion: an overview, International Journal of Advanced Manufacturing Technology 113 (2021) 3139–3162.
DOI: 10.1007/s00170-021-06835-8
Google Scholar
[2]
N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting, Prog Mater Sci 106 (2019).
DOI: 10.1016/j.pmatsci.2019.100578
Google Scholar
[3]
M. Kathiresan, M. Karthikeyan, R.J. Immanuel, A short review on SLM-processed Ti6Al4V composites, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (2023). https://doi.org/10.1177/09544089231169380/SUPPL_ FILE/SJ-DOCX-3-PIE-10.1177_09544089231169380.DOCX.
DOI: 10.1177/09544089231169380
Google Scholar
[4]
Ó. Teixeira, F.J.G. Silva, L.P. Ferreira, E. Atzeni, A Review of Heat Treatments on Improving the Quality and Residual Stresses of the Ti-6Al-4V Parts Produced by Additive Manufacturing, Metals (Basel) 10 (2020).
DOI: 10.3390/met10081006
Google Scholar
[5]
S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater Des 164 (2019).
DOI: 10.1016/j.matdes.2018.107552
Google Scholar
[6]
Rodney. Boyer, Gerhard. Welsch, E.W. Collings, Materials properties handbook : titanium alloys, ASM International, 1994.
Google Scholar
[7]
A. Mahmud, T. Huynh, L. Zhou, H. Hyer, A. Mehta, D.D. Imholte, N.E. Woolstenhulme, D.M. Wachs, Y. Sohn, Mechanical Behavior Assessment of Ti-6Al-4V ELI Alloy Produced by Laser Powder Bed Fusion, Metals (Basel) 11 (2021).
DOI: 10.3390/MET11111671
Google Scholar
[8]
S. Cao, Z. Chen, C.V.S. Lim, K. Yang, Q. Jia, T. Jarvis, D. Tomus, X. Wu, Defect, Microstructure, and Mechanical Property of Ti-6Al-4V Alloy Fabricated by High-Power Selective Laser Melting, JOM 69 (2017) 2684–2692.
DOI: 10.1007/s11837-017-2581-6
Google Scholar
[9]
A. Carrozza, G. Marchese, A. Saboori, E. Bassini, A. Aversa, F. Bondioli, D. Ugues, S. Biamino, P. Fino, Effect of Aging and Cooling Path on the Super β-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM), Materials 15 (2022).
DOI: 10.3390/ma15124067
Google Scholar
[10]
Z. Zhao, J. Chen, H. Tan, G. Zhang, X. Lin, W. Huang, Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure, Scr Mater 146 (2018) 187–191.
DOI: 10.1016/j.scriptamat.2017.11.021
Google Scholar
[11]
H. Jaber, J. Kónya, K. Kulcsár, T. Kovács, Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting, Materials 15 (2022).
DOI: 10.3390/ma15051978
Google Scholar
[12]
Y.C. Lin, Y. Tang, Y.Q. Jiang, J. Chen, D. Wang, D.G. He, Precipitation of Secondary Phase and Phase Transformation Behavior of a Solution-Treated Ti–6Al–4V Alloy during High-Temperature Aging, Adv Eng Mater 22 (2020).
DOI: 10.1002/adem.201901436
Google Scholar
[13]
C. de Formanoir, A. Brulard, S. Vivès, G. Martin, F. Prima, S. Michotte, E. Rivière, A. Dolimont, S. Godet, A strategy to improve the work-hardening behavior of Ti–6Al–4V parts produced by additive manufacturing, Mater Res Lett 5 (2017) 201–208.
DOI: 10.1080/21663831.2016.1245681
Google Scholar
[14]
T. Vilaro, C. Colin, J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metallurgical and Materials Transactions A 42A (2011).
DOI: 10.1007/s11661-011-0731-y
Google Scholar
[15]
Z. Lin, K. Song, B. Di Castri, W. Ya, X. Yu, Microstructure-gradient approach for effective determination of post-heat treatment temperature of an additive manufactured Ti-6Al-4V sample, J Alloys Compd 921 (2022).
DOI: 10.1016/j.jallcom.2022.165630
Google Scholar
[16]
A. Muiruri, M. Maringa, W. Du Preez, Quasi-Static Mechanical Properties of Post-Processed Laser Powder Bed Fusion Ti6Al4V(ELI) Parts under Compressive Loading, Applied Sciences 12 (2022).
DOI: 10.3390/app12199552
Google Scholar
[17]
Y.C. Lin, X.Y. Jiang, C. jun Shuai, C.Y. Zhao, D.G. He, M.S. Chen, C. Chen, Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy, Materials Science and Engineering A 711 (2018) 293–302.
DOI: 10.1016/j.msea.2017.11.044
Google Scholar
[18]
Z. Liang, Z. Sun, W. Zhang, S. Wu, H. Chang, The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy, J Alloys Compd 782 (2019) 1041–1048.
DOI: 10.1016/j.jallcom.2018.12.051
Google Scholar
[19]
B.D. Venkatesh, D.L. Chen, S.D. Bhole, Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy, Materials Science and Engineering A 506 (2009) 117–124.
DOI: 10.1016/J.MSEA.2008.11.018
Google Scholar
[20]
R.R. Boyer, Titanium and Its Alloys: Metallurgy, Heat Treatment and Alloy Characteristics, in: Encyclopedia of Aerospace Engineering, John Wiley & Sons, Ltd, 2010.
DOI: 10.1002/9780470686652.eae198
Google Scholar
[21]
X.Y. Zhang, G. Fang, S. Leeflang, A.J. Böttger, A. A. Zadpoor, J. Zhou, Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy, J Alloys Compd 735 (2018) 1562–1575.
DOI: 10.1016/J.JALLCOM.2017.11.263
Google Scholar