Effect of Water on Shear Strength Parameter of Clay Shale

Article Preview

Abstract:

Clay shale is composed of clay, rock, and dust that has undergone a cementation process, has unique characteristics, namely being very hard when dry and very soft when wet. However, due to the exposed layers of clay shale, it also weathering due to continuous contact with air. This causes the failure of structures standing on clay shale. One of the parameters that affect the strength of clay shale is the shear strength parameter which can be carried out through direct shear and uncofined compression strength tests. In this study the addition of water content was applied to determine changes in the shear strength parameters of clay shale. Based on the results of the direct shear and unconfined compression strength test, it was found that with the addition of water content, the shear strength parameter of clay shale decreased. The addition of 100% water content causes the friction angel to be 18.93o and the cohesion to be 11.95 kPa on the direct shear test. While the results of the unconfined compression strength test showed a decrease of 81.18% at the addition of 75% water content. The decrease in the shear strength parameter is due to the loss of bonds between particles.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 23)

Pages:

185-191

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Amann et al., "Analysis of acoustic emissions recorded during a mine-by experiment in an underground research laboratory in clay shales," Int. J. Rock Mech. Min. Sci., vol. 106, no. February, p.51–59, (2018).

DOI: 10.1016/j.ijrmms.2018.04.021

Google Scholar

[2] I. Zarkasi, H. Irpanni, and H. Arifien, "Penanganan Jembatan Cisomang ruas tol Cikampek-Padalarang: pembelajaran penanganan jembatan akibat pergerakan tanah clay shale," J. HPJI (Himpunan …, vol. 4, no. 1, p.25–36, (2018).

Google Scholar

[3] E. Hartono, S. P. R. Wardani, and A. S. Muntohar, "The behavior of the clay shale stabilized by dry and wet cement mixing method," J. Geoengin., vol. 16, no. 3, p.81–90, (2021).

Google Scholar

[4] D. P. Kusumastuti and I. Sepriyanna, "Soft soil stabilization with rice husk ash and glass powder based on physical characteristics," IOP Conf. Ser. Mater. Sci. Eng., vol. 650, no. 1, p.1–6, (2019).

DOI: 10.1088/1757-899x/650/1/012025

Google Scholar

[5] H. Adisurya and C. A. Makarim, "Perilaku kegagalan konstruksi jalan raya yang bertumpu pada fondasi tiang di tanah clay shale," JMTS J. Mitra Tek. Sipil, vol. 5, no. 1, p.55–70, (2022).

DOI: 10.24912/jmts.v5i1.16516

Google Scholar

[6] M. Gutierrez, R. Nygård, K. Høeg, and T. Berre, "Normalized undrained shear strength of clay shales," Eng. Geol., vol. 99, no. 1–2, p.31–39, (2008).

DOI: 10.1016/j.enggeo.2008.02.002

Google Scholar

[7] A. M. A. Putera, S. Pramusandi, and B. Damianto, "Identification and classification of clayshale characteristic and some considerations for slope stability," African J. Environ. Sci. Technol., vol. 11, no. 4, p.163–197, (2017).

DOI: 10.5897/ajest2014.1792

Google Scholar

[8] I. M. Alatas and P. T. Simatupang, "Pengaruh proses pelapukan clay shale terhadap perubahan parameter rasio disintegritas (DR)," J. Tek. Sipil ITB, vol. 24, no. 1, p.77–82, (2017).

Google Scholar

[9] A. Yusuf, I. Dio, and kresno wikan S, "Perilaku clay shale terhadap kuat geser residual," J. Karya Tek. Sipil, Vol. 6, No. 3, (2017), p.81–92.

Google Scholar

[10] M. Irsyam, A. Sahadewa, A. Boesono, and Soebagyo, "Pengaruh strength reduction tanah cay-shale akibat pelaksanaan pemboran terhadap nilai daya dukung pondasi tiang di Jembatan Suramadu berdasarkan analisis hasil tes OC," J. Tek. Sipil ITB, Vol. 14, No. 2, (2007),p.1–11.

DOI: 10.5614/jts.2007.14.2.1

Google Scholar

[11] F. Z. Waskito, G. Pamungkas, S. Hardiyati, and K. W. Sadono, "Analisa stabilitas lereng clayshale pada pekerjaan pembangunan jalan tol Bawen-Salatiga paket 3 . 1," J. Karya Tek. Sipil, Vol. 5, No. 2, (2016), p.211–219.

Google Scholar

[12] S. Widyastuti, Abdurrokhim, and Y. A. Sendjaja, "Asal sedimen batupasir Formasi Jatiluhur dan Formasi Cantayan Daerah Tanjungsari dan sekitarnya, Kecamatan Cariu, Kabupaten Bogor, Provinsi Jawa Barat," Bull. Sci. Contrib., Vol. 14, No. 1, (2016), p.25–32.

DOI: 10.31315/jigp.v9i2.9504

Google Scholar

[13] L. Jurnaliah, "Paleoekologi satuan batulempung formasi Jatiluhur daerah Cileungsi , kecamatan Cileungsi, kabupaten Bogor, Jawa Barat," Bull. Sci. Contrib., Vol. 4, No. 1, (2006), p.78–87.

DOI: 10.14203/risetgeotam2018.v28.660

Google Scholar

[14] R. Oktaviani, P. P Raharjo, and I. A Sadisun, "Kajian ketahanan batuan clay shale formasi Jatiluhur di Sentul City Jawa Barat," Promine, Vol. 6, No. 1, (2018), p.26–32.

DOI: 10.33019/promine.v6i1.715

Google Scholar

[15] A. Idrus M, S. Pintor T, K. Wawan, and Panji, "Re-weathering of stabilized clay shale with portland cement behavior," in MATEC Web of Conferences, Vol. 276, (2019), p.1–9.

DOI: 10.1051/matecconf/201927605009

Google Scholar

[16] W. Diana, E. Hartono, and A. S. Muntohar, "The permeability of portland cement-stabilized clay shale," in IOP Conference Series: Materials Science and Engineering, Vol. 650, No. 1, (2019), p.1–8.

DOI: 10.1088/1757-899x/650/1/012027

Google Scholar

[17] BSN, "SNI 3420:2016 Metode uji kuat geser langsung tanah tidak terkonsolidasi dan tidak terdrainase," (2016).

Google Scholar

[18] SNI 3638, "SNI 3638:2012 Standar Nasional Indonesia Metode uji kuat tekan-bebas tanah kohesif Badan Standardisasi Nasional " Copy SNI ini dibuat oleh BSN untuk," (2012).

DOI: 10.31000/mbjtm.v2i2.1883

Google Scholar

[19] D. P. Kusumastuti, I. Sepriyanna, and A. S. Nur Chairat, "Pengaruh penambahan serbuk arang cangkang sawit terhadap kuat geser langsung pada tanah lempung," Konstruksia, Vol. 14, No. 1, (2022), p.33–39.

DOI: 10.24853/jk.14.1.33-39

Google Scholar

[20] M. A. Dafalla, "Effects of clay and moisture content on direct shear tests for clay-sand mixtures," Adv. Mater. Sci. Eng., Vol. 2013, (2013).

DOI: 10.1155/2013/562726

Google Scholar

[21] I. Abdullahi, U. U. Umoh, and A. C. Aapta, "Effect of varying moisture content on shear strength properties of soil," Saudi J. Civ. Eng., Vol. 6, No. 11, (2022), p.256–263.

DOI: 10.36348/sjce.2022.v06i11.001

Google Scholar

[22] D. Adrian, I. B. Mochtar, and N. E. Mochtar, "Analisa sudut-geser-dalam tanah berbutir halus (cohesive soil) berdasarkan pendekatan cracked soil," J. Tek. ITS, Vol. 8, No. 2, (2019), p.74–78.

DOI: 10.12962/j23373539.v8i2.45898

Google Scholar

[23] M. Muntaha, L. Caraka, and A. A. I. Saputra, "Karakteristik fisik dan mekanik tanah residual Balikpapan Utara akibat pengaruh variasi kadar air," in The 2nd Conference on Innovation and Industrial Applications, Vol. 2, No. 1, (2016), p.101–108.

DOI: 10.12962/j23546026.y2018i1.3353

Google Scholar

[24] S. Saptono, R. Hariyanto, H. T. S., and M. D. Wahyudi, "Penentuan pengaruh air terhadap kohesi dan sudut gesek dalam pada batugamping," Progr. Stud. Tek. Pertamb. UPN Veteran Yogyakarta, Vol. 1, No. 1, (2014), p.1–9.

Google Scholar

[25] R. Fithria and D. P. Kusumastuti, "The effect of wood charcoal powder and pumice powder on the parameters of shear strength of clay soil," Indones. Geotech. J., Vol. 1, No. 2, (2022), p.50–58.

DOI: 10.56144/igj.v1i2.14

Google Scholar

[26] T. Al-Bazali, "The impact of water content and ionic diffusion on the uniaxial compressive strength of shale," Egypt. J. Pet., Vol. 22, No. 2, (2013), p.249–260.

DOI: 10.1016/j.ejpe.2013.06.004

Google Scholar