[1]
IEA, International Energy Agency Special Report - An Energy Sector Roadmap to Net Zero Emissions in Indonesia (2022).
DOI: 10.1787/4a9e9439-en
Google Scholar
[2]
A. P. Tampubolon et al., Deep decarbonization of Indonesia's energy system: a pathway to zero emissions by 2050. Jakarta, Indonesia: Institute for Essential Services Reform (IESR), ed (2021).
Google Scholar
[3]
IEA, International Energy Agency - World Energy Outlook 2022, (2022).
Google Scholar
[4]
P. M. Falcone, M. Hiete, and A. Sapio, Hydrogen economy and sustainable development goals: Review and policy insights, Current opinion in green and sustainable chemistry, vol. 31 (2021) 100506.
DOI: 10.1016/j.cogsc.2021.100506
Google Scholar
[5]
S. Thacker et al., Infrastructure for sustainable development, Nature Sustainability, vol. 2, no. 4 (2019) 324-331.
Google Scholar
[6]
A. G. Olabi et al., Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators, Renewable and Sustainable Energy Reviews, vol. 153 (2022) 111710.
DOI: 10.1016/j.rser.2021.111710
Google Scholar
[7]
S. Küfeoglu, SDG-9: industry, innovation and infrastructure, in Emerging Technologies: Value Creation for Sustainable Development: Springer (2022) 349-369.
DOI: 10.1007/978-3-031-07127-0_11
Google Scholar
[8]
A. Selot, L. K. Kuok, M. Robinson, T. L. Mason, and P. I. Barton, A short term operational planning model for natural gas production systems, AIChE Journal, vol. 54, no. 2 (2008) 495-515.
DOI: 10.1002/aic.11385
Google Scholar
[9]
S. Rana, Facts and Data on Environmental Risks—Oil and Gas Drilling Operations SPE (2008) 114993.
Google Scholar
[10]
F. Ascensão et al., Environmental challenges for the Belt and Road Initiative, Nature Sustainability, vol. 1, no. 5 (2018) 206-209.
Google Scholar
[11]
M. L. Richardson et al., A review of the impact of pipelines and power lines on biodiversity and strategies for mitigation, Biodiversity and Conservation, vol. 26 (2017) 1801-1815.
DOI: 10.1007/s10531-017-1341-9
Google Scholar
[12]
R. Daniel, The impact of oil and gas pipeline on residential property values: A case study in the city of Houston. Texas Southern University (2013).
Google Scholar
[13]
H. Zhang and A. Hedge, Overview of human thermal responses to warm surfaces of electronic devices, Journal of Electronic Packaging, vol. 139, no. 3 (2017) 030802.
DOI: 10.1115/1.4037146
Google Scholar
[14]
A. Arora, N. Medora, and B. Pinnangudi, Experimental Characterization of Burn Hazards, Electrical Engineering & Computer Science Vol. 3 (2015).
Google Scholar
[15]
K. Parsons, Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. CRC press (2007).
DOI: 10.1201/9780203302620
Google Scholar
[16]
M. Yen, F. Colella, H. Kytomaa, B. Allin, and A. Ockfen, Contact Burn Injuries: Part II: The influence of object shape, size, contact resistance, and applied heat flux, (2020) 1-6.
DOI: 10.1109/spce50045.2020.9296194
Google Scholar
[17]
F. Colella, M. Barry, and J. Vickery, Contact Burn Injuries: Experimental Assessments of Short Duration Contact Exposures, IEEE (2021) 1-8.
DOI: 10.1109/ispce51668.2021.9861363
Google Scholar
[18]
A. P. Hatton and H. Halfdanarson, The role of contact resistance in skin burns, Journal of biomedical engineering, vol. 4, no. 2 (1982) 97-102.
DOI: 10.1016/0141-5425(82)90068-1
Google Scholar
[19]
A. Oosterkamp, T. Ytrehus, and S. T. Galtung, Effect of the choice of boundary conditions on modelling ambient to soil heat transfer near a buried pipeline, Applied Thermal Engineering, vol. 100 (2016) 367-377.
DOI: 10.1016/j.applthermaleng.2016.01.057
Google Scholar
[20]
Y. Bai and J. M. Niedzwecki, Modeling deepwater seabed steady-state thermal fields around buried pipeline including trenching and backfill effects, Computers and Geotechnics, vol. 61, (2014) 221-229.
DOI: 10.1016/j.compgeo.2014.05.018
Google Scholar
[21]
E. Zakarian, J. Holbeach, and J. E. P. Morgan, A holistic approach to steady-state heat transfer from partially and fully buried pipelines (2012) OTC-23033.
DOI: 10.4043/23033-ms
Google Scholar
[22]
V. Krashchenko, N. Tretyakov, A. Chernov, I. Shaykhalov, and A. Zhukov, Modeling and thermal calculation of a pipeline insulation system vol. 164: EDP Sciences (2020) 14021.
DOI: 10.1051/e3sconf/202016414021
Google Scholar
[23]
G. P. Guidetti, G. L. Rigosi, and R. Marzola, The use of polypropylene in pipeline coatings, Progress in Organic Coatings, vol. 27, no. 1-4 (1996) 79-85.
DOI: 10.1016/0300-9440(95)00523-4
Google Scholar
[24]
E. Bell, Y. Lu, N. Daraboina, and C. Sarica, Thermal methods in flow assurance: A review, Journal of Natural Gas Science and Engineering, vol. 88 (2021) 103798.
DOI: 10.1016/j.jngse.2021.103798
Google Scholar
[25]
S. Sadafule and K. D. Patil, Study on effect of insulation design on thermal-hydraulic analysis: an important aspect in subsea pipeline designing, Journal of Petroleum Engineering & Technology, vol. 4, no. 1 (2014) 33-44.
Google Scholar
[26]
J. Danielewicz, B. Śniechowska, M. A. Sayegh, N. Fidorów, and H. Jouhara, Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground, Energy, vol. 108 (2016) 172-184.
DOI: 10.1016/j.energy.2015.07.012
Google Scholar
[27]
B. Guo, S. Duan, and A. Ghalambor, A simple model for predicting heat loss and temperature profiles in insulated pipelines, SPE Production & Operations, vol. 21, no. 01 (2006) 107-113.
DOI: 10.2118/86983-pa
Google Scholar
[28]
D. G. Kröger, Air-cooled heat exchangers and cooling towers. Penwell Corporation Oklahoma (2004).
Google Scholar
[29]
E. Liu, B. Guo, L. Lv, W. Qiao, and M. Azimi, Numerical simulation and simplified calculation method for heat exchange performance of dry air cooler in natural gas pipeline compressor station, Energy Science & Engineering, vol. 8, no. 6 (2020) 2256-2270.
DOI: 10.1002/ese3.661
Google Scholar
[30]
E. Liu, L. Lv, Y. Yi, and P. Xie, Research on the steady operation optimization model of natural gas pipeline considering the combined operation of air coolers and compressors, IEEE access, vol. 7 (2019) 83251-83265.
DOI: 10.1109/access.2019.2924515
Google Scholar
[31]
M. Mohitpour, H. Golshan, and M. A. Murray, Pipeline design & construction: a practical approach. American Society of Mechanical Engineers, 2003.
DOI: 10.1115/1.802574.ch7
Google Scholar
[32]
ASTM, Standard guide for heated system surface conditions that produce contact burn injuries, ASTM C1055-2, 2020.
Google Scholar
[33]
F. Xu, T. Wen, K. Seffen, and T. Lu, Modeling of skin thermal pain: A preliminary study, Applied mathematics and computation, vol. 205, no. 1 (2008) 37-46.
DOI: 10.1016/j.amc.2008.05.045
Google Scholar
[34]
P. Kolimi, S. Narala, D. Nyavanandi, A. A. A. Youssef, and N. Dudhipala, Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements, Cells, vol. 11, no. 15 (2022) 2439.
DOI: 10.3390/cells11152439
Google Scholar
[35]
KESDM. Permen ESDM No 32/2021 - Inspeksi Teknis dan Pemeriksaan Keselamatan Instalasi dan Peralatan pada Kegiatan Usaha Minyak dan Gas (2021).
Google Scholar
[36]
S. E. Chapple. Fin Fan ® Air Cooled Heat Exchangers – Life Cycle Costs [Online] Available: https://files.chartindustries.com/hudson/FinFan_Life_Cycle_Cost_Analysis.pdf (2023).
Google Scholar
[37]
Chart. 16 August 2023. Hudson Product - Heat Exchanger Design Software [Online]. Available: https://www.chartindustries.com/Businesses-Brands/Hudson (2023).
Google Scholar