Lansium domesticum Correa Extract as an Environmentally Friendly Larvacidal Activity and Identification

Article Preview

Abstract:

There are various approaches to prevent or reduce the transmission of dengue fever, one of which involves interrupting the vector's life cycle through the use of pesticides and biological control methods. Considering the significant impact of synthetic pesticides on the environment, the utilization of natural ingredients such as botanical pesticides is a prudent option. These have minimal to no adverse effects on the environment and are relatively safe for animals and humans. This research aimed to assess the efficacy of a larvicide derived from duku peel extract (Lansium domesticum Correa) against L3 larvae of Aedes sp. It employed a quantitative approach, utilizing an experimental design with a post-test control group. A purposive sampling technique was used to select a total of 600 larvae. The data collected were then analyzed using SPSS version 23. The initial test involved data normalization, with a p-value >0.05 indicating normal distribution of the data. Subsequently, the Pearson correlation test was conducted, revealing a significant correlation with a p-value of 0.000 <0.05. The variables had a strong connection at a Pearson correlation value of 0.998. Probit regression analysis was then performed, yielding results of 4.699 µg/mL for LC50 and 11.234 for LC90 µg/mL.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 25)

Pages:

21-30

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] WHO. Dengue - Global situation. 2024.

Google Scholar

[2] Grobusch MP, Niedrig M, Go K, Teichmann D, Clinic M. Research note. 2006;395–7.

Google Scholar

[3] Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, et al. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. 2011; 108(6): 1541–9

DOI: 10.1007/s00436-010-2212-4

Google Scholar

[4] Abdallah HM, Mohamed GA, Ibrahim SRM. Lansium domesticum—A Fruit with Multi-Benefits: Traditional Uses, Phytochemicals, Nutritional Value, and Bioactivities. Nutrients. 2022; 14(7):1–42

DOI: 10.3390/nu14071531

Google Scholar

[5] Techavuthiporn C. Langsat— Lansium domesticum. Exotic Fruits. Elsevier Inc.; 2018. 279–283 p

DOI: 10.1016/b978-0-12-803138-4.00036-8

Google Scholar

[6] Shankar S, Jaiswal L, Aparna RSL, Vara Prasad RGS, Kumar GP, Manohara CM. Wound healing potential of green synthesized silver nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Express. 2015;5(2):159–64

DOI: 10.1166/mex.2015.1225

Google Scholar

[7] Subahar R, Aulung A, Winita R, Susanto L, Lubis NS, Firmansyah NE, et al. Effects of Lansium domesticum leaf extract on mortality, morphology, and histopathology of Aedes aegypti larvae (Diptera: Culicidae). Int J Mosq Res. 2020;7(4):105–11. Available from: https://www.dipterajournal.com/pdf/2020/vol7issue4/PartB/7-4-6-606.pdf

Google Scholar

[8] Yunus R, Rosanty A, Orno TG, Hasan E. Phytochemical analysis , Reppelant and Larvacide test of Lansium domesticum against Dengue Hemmoragic Fever Vector. :70–84.

Google Scholar

[9] Octaviana D, Nurlaela S, Anandari D, Yanuar Pradani F. Lansium Domesticum Corr. Leaf Exstrak Spray As Bioinsecticide For Aedes Aegypti Mosquito Control. Int J Public Heal Clin Sci. 2020;7(2):51–9. Available from:

Google Scholar

[10] Safni, Rahmiana Zein, Reza audina putri D. Advancement in Green Synthesis of Titanium Dioxide: Photocatalytic and Larvicidal Activities – A review. Hydrogen. 2024; 12 (February): 115–26.

DOI: 10.33394/hjkk.v12i1.10655

Google Scholar

[11] Murugesan R, Vasuki K, Kaleeswaran B. A green alternative: Evaluation of Solanum torvum (Sw.) leaf extract for control of Aedes aegypti (L.) and its molecular docking potential. Intell Pharm. 2024;2(2):251–62

DOI: 10.1016/j.ipha.2023.11.012

Google Scholar

[12] Gupta M, Gupta D. Essential oils: As Potential Larvicides. J Drug Deliv Ther. 2022; 12(3):193–201

DOI: 10.22270/jddt.v12i3.5313

Google Scholar

[13] Shin J, Lee JW, Seo SM, Hyun J, Park IK. Larvicidal activities of Cnidium officinale Makino extract encapsulated with cellulose nanocrystal-stabilized Pickering emulsion against Aedes albopictus Skuse, a vector of Zika virus. Ind Crops Prod. 2023;204(PA):117263

DOI: 10.1016/j.indcrop.2023.117263

Google Scholar

[14] Ghosh T, Saha S, Dutta A, Parida S, Mondal M, Khalua RK. Plant extracts in controlling disease vector mosquitoes. Int J Mosq Res. 2024; 11 (1): 89–91

DOI: 10.22271/23487941.2024.v11.i1b.747

Google Scholar

[15] Ramayanti I, Febriani R. Uji Efektivitas Larvasida Ekstrak Daun Pepaya (Carica papaya Linn) terhadap Larva Aedes aegypti Pendahuluan Nyamuk yang ada . Spesies ini dapat ditemukan aegypti di Indonesia . Bisa dikatakan sebagai yang telah resisten , salah satunya Metode Penelitian. Syifa'MEDIKA. 2016;6(2):79–88.

DOI: 10.32502/sm.v6i2.1383

Google Scholar

[16] Hadi Vania Armilda L. Systematic literature review: Potensi Tanaman Genus Syzygium sebagai larvasida Aedes aegypti. (2023)

Google Scholar

[17] Ishak NI, Kasman, Chandra. Effectiveness of Lime Skin Extract (Citrus Amblycarpa) as Natural Larvacide Aedes Aegypti Instar III. Media Kesehat Masy Indones. 2019;15(3):302–10

DOI: 10.30597/mkmi.v15i3.6533

Google Scholar

[18] N SA, I S, I S. Efektifitas Ekstrak Etanol Serai Wangi (Cymbopogon Nardus L) Sebagai Larvasida Aedes Aegypti. E-Jurnal Med Udayana. 2017;6(1):1–4.

DOI: 10.35799/jbl.10.1.2020.26920

Google Scholar

[19] Balaraman P, Balasubramanian B, Liu W. Sargassum myriocystum- mediated TiO2 -nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. 2022; 204(September 2021).

DOI: 10.1016/j.envres.2021.112278

Google Scholar

[20] Narayanan M, Vigneshwari P, Natarajan D. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial , larvicidal , and anticancer potential. Environ Res. 2021;200(April):111335. https://doi.org/10.1016/j.envres. 2021.111335

DOI: 10.1016/j.envres.2021.111335

Google Scholar

[21] Soni N, Dhiman RC. Larvicidal activity of Zinc oxide and titanium dioxide nanoparticles Synthesis using Cuscuta reflexa extract against malaria vector (Anopheles stephensi). Egypt J Basic Appl Sci. 2020;7(1):342–52

DOI: 10.1080/2314808X.2020.1830236

Google Scholar

[22] Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, et al. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B Biol. 2017; 171 (February): 117–24

DOI: 10.1016/j.jphotobiol.2017.05.003

Google Scholar