Online Health Community Recommendation System with LDA-FCM Approach

Article Preview

Abstract:

Online health communities generate vast knowledge on various topics, making it challenging to track latent themes and correlations among key variables. Identifying these hidden variables and their relationships can enhance user engagement and content curation. This paper introduces a novel approach using fuzzy cognitive maps to uncover these variables and causal relationships in online health communities, providing users with valuable insights for disease management and treatment. The study employed Latent Dirichlet Allocation (LDA) to generate topics from an online health forum, using this as evidence to construct fuzzy cognitive maps. The proposed system reflects disease development and offers significant insights for managing health conditions. The findings have theoretical and practical implications for developing online recommendation systems in the healthcare domain. This study contributes to the literature by proposing a method for identifying key variables and relationships, aiding health professionals and patients in understanding and managing health conditions. Future research will explore the system’s effectiveness in real-world settings and the role of user-generated content in enhancing recommendation systems.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

329-342

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.E. Costello, A. Anand, M.J. Evans, W.G. Dixon, Associations between engagement with an online health community and changes in patient activation and health care utilization: longitudinal web-based survey, J. Med. Internet Res. 21 (2019) e13477.

DOI: 10.2196/13477

Google Scholar

[2] World Health Organization, Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed 10/10, 2023).

Google Scholar

[3] M.L. Litchman, L.S. Edelman, G.W. Donaldson, Effect of diabetes online community engagement on health indicators: cross-sectional study, JMIR Diabetes 3 (2018) e8603.

DOI: 10.2196/diabetes.8603

Google Scholar

[4] J. Guo, S. Shan, Y.A. Khan, What are the impetuses behind e-health applications' self-management services' ongoing adoption by health community participants?, Health Informatics J. 29 (2023) 14604582231152801.

DOI: 10.1177/14604582231152801

Google Scholar

[5] J. Min, Y. Chen, L. Wang, T. He, S. Tang, Diabetes self-management in online health communities: an information exchange perspective, BMC Med. Inform. Decis. Mak. 21 (2021) 1-12.

DOI: 10.1186/s12911-021-01561-3

Google Scholar

[6] A. Hughes, N. Heydarian, D. Gerardo, I. Solis, O. Morera, Seeking health information and social support in the diabetes online community, Front. Clin. Diabetes Healthc. 2 (2021) 708405.

DOI: 10.3389/fcdhc.2021.708405

Google Scholar

[7] A. Kamis, Y. Yao, S. Kim, An empirical validation of the patient-centered e-health framework in patient-focused websites, Commun. Assoc. Inf. Syst. 34 (2014) 25.

DOI: 10.17705/1cais.03425

Google Scholar

[8] J. Otiono, M. Olaosebikan, O. Shaer, O. Nov, M.P. Ball, Understanding users' information needs and collaborative sensemaking of microbiome data, Proc. ACM Hum.-Comput. Interact. 3 (2019) CSCW, pp.1-21.

DOI: 10.1145/3274470

Google Scholar

[9] Q.B. Liu, X. Liu, X. Guo, The effects of participating in a physician-driven online health community in managing chronic disease: Evidence from two natural experiments, MIS Q. 44 (2020).

DOI: 10.25300/misq/2020/15102

Google Scholar

[10] P. Resnick, H.R. Varian, Recommender systems, Commun. ACM 40 (1997) 56-58.

Google Scholar

[11] A.K. Sahoo, C. Pradhan, R.K. Barik, H. Dubey, DeepReco: deep learning-based health recommender system using collaborative filtering, Computation 7 (2019) 25.

DOI: 10.3390/computation7020025

Google Scholar

[12] R.J. Mooney, L. Roy, Content-based book recommending using learning for text categorization, in: Proc. Fifth ACM Conf. Digital Libraries, 2000, pp.195-204.

DOI: 10.1145/336597.336662

Google Scholar

[13] S. Philip, P. Shola, A. Ovye, Application of content-based approach in research paper recommendation system for a digital library, Int. J. Adv. Comput. Sci. Appl. 5 (2014) 10.

DOI: 10.14569/ijacsa.2014.051006

Google Scholar

[14] T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito, M. Zanker, Linked open data to support content-based recommender systems, in: Proc. 8th Int. Conf. Semantic Syst., 2012, pp.1-8.

DOI: 10.1145/2362499.2362501

Google Scholar

[15] S. Sahu, R. Kumar, M.S. Pathan, J. Shafi, Y. Kumar, M.F. Ijaz, Movie popularity and target audience prediction using the content-based recommender system, IEEE Access 10 (2022) 42044-42060.

DOI: 10.1109/access.2022.3168161

Google Scholar

[16] S. Reddy, S. Nalluri, S. Kunisetti, S. Ashok, B. Venkatesh, Content-based movie recommendation system using genre correlation, in: Smart Intell. Comput. Appl., Proc. Second Int. Conf. SCI 2018, Vol. 2, Springer, 2019, pp.391-397.

DOI: 10.1007/978-981-13-1927-3_42

Google Scholar

[17] C. Young, Community management that works: how to build and sustain a thriving online health community, J. Med. Internet Res. 15 (2013) e119.

DOI: 10.2196/jmir.2501

Google Scholar

[18] R. Burke, Knowledge-based recommender systems, Encycl. Libr. Inf. Syst. 69 (2000) Suppl. 32, 175-186.

Google Scholar

[19] X. Li, T. Murata, Customizing knowledge-based recommender system by tracking analysis of user behavior, in: Proc. 2010 IEEE 17th Int. Conf. Ind. Eng. Eng. Manag., IEEE, 2010, pp.65-69.

DOI: 10.1109/icieem.2010.5646618

Google Scholar

[20] A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, An integrated environment for the development of knowledge-based recommender applications, Int. J. Electron. Commer. 11 (2006) 11-34.

DOI: 10.2753/jec1086-4415110201

Google Scholar

[21] C.C. Aggarwal, Knowledge-based recommender systems, in: Recommender Systems: The Textbook, Springer, 2016, pp.167-197.

DOI: 10.1007/978-3-319-29659-3_5

Google Scholar

[22] D. Chen, R. Zhang, K. Liu, L. Hou, Knowledge discovery from posts in online health communities using unified medical language system, Int. J. Environ. Res. Public Health 15 (2018) 1291.

DOI: 10.3390/ijerph15061291

Google Scholar

[23] X. Wang, K. Zhao, N. Street, Social support and user engagement in online health communities, in: Int. Conf. Smart Health, Springer, 2014, pp.97-110.

Google Scholar

[24] M. Lee, P. Choi, Y. Woo, A hybrid recommender system combining collaborative filtering with neural network, in: Adaptive Hypermedia and Adaptive Web-Based Systems, Proc. Second Int. Conf. AH 2002, Malaga, Spain, May 29–31, 2002, Springer, 2002, pp.531-534.

DOI: 10.1007/3-540-47952-x_77

Google Scholar

[25] B. Kosko, Fuzzy cognitive maps, Int. J. Man-Machine Stud. 24 (1986) 65-75.

Google Scholar

[26] E.I. Papageorgiou, J.L. Salmeron, A review of fuzzy cognitive maps research during the last decade, IEEE Trans. Fuzzy Syst. 21 (2012) 66-79.

DOI: 10.1109/tfuzz.2012.2201727

Google Scholar

[27] C. Stylios, V.C. Georgopoulos, Develop fuzzy cognitive maps based on recorded data and information, in: 2015 IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), IEEE, 2015, pp.1-6.

DOI: 10.1109/fuzz-ieee.2015.7338090

Google Scholar

[28] A. Amirkhani, E.I. Papageorgiou, A. Mohseni, M.R. Mosavi, A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications, Comput. Methods Programs Biomed. 142 (2017) 129-145.

DOI: 10.1016/j.cmpb.2017.02.021

Google Scholar

[29] A.J. Jetter, K. Kok, Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods, Futures 61 (2014) 45-57.

DOI: 10.1016/j.futures.2014.05.002

Google Scholar

[30] O. Osoba, B. Kosko, Causal modeling with feedback fuzzy cognitive maps, in: Social-Behavioral Modeling for Complex Systems, Springer, 2019, pp.587-615.

DOI: 10.1002/9781119485001.ch25

Google Scholar

[31] P.P. Groumpos, Fuzzy cognitive maps: basic theories and their applications in medical problems, in: 2011 19th Mediterranean Conf. Control Autom. (MED), IEEE, 2011, pp.1490-1497.

DOI: 10.1109/med.2011.5983203

Google Scholar

[32] J.P. Carvalho, On the implementation of evolving dynamic cognitive maps, in: Int. Fuzzy Syst. Assoc. World Congr., Springer, 2019, pp.201-213.

Google Scholar

[33] P. Zdanowicz, D. Petrovic, New mechanisms for reasoning and impacts accumulation for rule-based fuzzy cognitive maps, IEEE Trans. Fuzzy Syst. 26 (2017) 543-555.

DOI: 10.1109/tfuzz.2017.2686363

Google Scholar

[34] J.L. Salmeron, Fuzzy cognitive maps for artificial emotions forecasting, Appl. Soft Comput. 12 (2012) 3704-3710.

DOI: 10.1016/j.asoc.2012.01.015

Google Scholar

[35] O. Osoba, B. Kosko, Beyond DAGs: modeling causal feedback with fuzzy cognitive maps, arXiv preprint arXiv:1906.11247 (2019).

Google Scholar

[36] E. Bolthausen, M.V. Wüthrich, Bernoulli's law of large numbers, ASTIN Bull. J. IAA 43 (2013) 73-79.

DOI: 10.1017/asb.2013.11

Google Scholar

[37] M. Alemi-Ardakani, A.S. Milani, S. Yannacopoulos, G. Shokouhi, On the effect of subjective, objective and combinative weighting in multiple criteria decision making: a case study on impact optimization of composites, Expert Syst. Appl. 46 (2016) 426-438.

DOI: 10.1016/j.eswa.2015.11.003

Google Scholar

[38] E. Bourgani, C. Stylios, V. Georgopoulos, G. Manis, A study on fuzzy cognitive map structures for medical decision support systems, in: 8th Conf. Eur. Soc. Fuzzy Log. Technol. (EUSFLAT-13), Atlantis Press, 2013, pp.784-791.

DOI: 10.2991/eusflat.2013.111

Google Scholar

[39] Y. Li, X. Ma, J. Song, Y. Yang, X. Ju, Exploring the effects of online rating and the activeness of physicians on the number of patients in an online health community, Telemed. E-Health 25 (2019) 1090-1098.

DOI: 10.1089/tmj.2018.0192

Google Scholar

[40] M.F. Dodurka, E. Yesil, L. Urbas, Causal effect analysis for fuzzy cognitive maps designed with non-singleton fuzzy numbers, Neurocomputing 232 (2017) 122-132.

DOI: 10.1016/j.neucom.2016.09.112

Google Scholar

[41] J.P. Carvalho, On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences, Fuzzy Sets Syst. 214 (2013) 6-19.

DOI: 10.1016/j.fss.2011.12.009

Google Scholar

[42] W. Pedrycz, A. Jastrzebska, W. Homenda, Design of fuzzy cognitive maps for modeling time series, IEEE Trans. Fuzzy Syst. 24 (2016) 120-130.

DOI: 10.1109/tfuzz.2015.2428717

Google Scholar

[43] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res. 3 (2003) 993-1022.

Google Scholar

[44] D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401 (1999) 788-791.

DOI: 10.1038/44565

Google Scholar

[45] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (1990) 391-407.

DOI: 10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9

Google Scholar

[46] T.L. Griffiths, M. Steyvers, Finding scientific topics, Proc. Natl. Acad. Sci. 101 (2004) 5228-5235.

DOI: 10.1073/pnas.0307752101

Google Scholar

[47] M.P. Basilio, V. Pereira, G. Brum, Identification of operational demand in law enforcement agencies, Data Technol. Appl. 53 (2019) 333-372.

DOI: 10.1108/dta-12-2018-0109

Google Scholar

[48] M.S. Islam, M.M. Hasan, X. Wang, H.D. Germack, A systematic review on healthcare analytics: application and theoretical perspective of data mining, in: Healthcare, vol. 6, no. 2, Multidiscip. Digit. Publ. Inst., 2018, p.54.

DOI: 10.3390/healthcare6020054

Google Scholar

[49] G. Nápoles, E. Papageorgiou, R. Bello, K. Vanhoof, Learning and convergence of fuzzy cognitive maps used in pattern recognition, Neural Process. Lett. 45 (2017) 431-444.

DOI: 10.1007/s11063-016-9534-x

Google Scholar

[50] J.A. Konstan, J. Riedl, Recommender systems: from algorithms to user experience, User Model. User-Adapt. Interact. 22 (2012) 101-123.

DOI: 10.1007/s11257-011-9112-x

Google Scholar

[51] R. Burke, Hybrid recommender systems: Survey and experiments, User Model. User-Adapt. Interact. 12 (2002) 331-370.

Google Scholar

[52] K. Mls, R. Cimler, J. Vaščák, M. Puheim, Interactive evolutionary optimization of fuzzy cognitive maps, Neurocomputing 232 (2017) 58-68.

DOI: 10.1016/j.neucom.2016.10.068

Google Scholar

[53] S. Syed, M. Spruit, Full-text or abstract? Examining topic coherence scores using latent Dirichlet allocation, in: 2017 IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA), IEEE, 2017, pp.165-174.

DOI: 10.1109/dsaa.2017.61

Google Scholar

[54] D. Mimno, H. Wallach, E. Talley, M. Leenders, A. McCallum, Optimizing semantic coherence in topic models, in: Proc. 2011 Conf. Empir. Methods Nat. Lang. Process., 2011, pp.262-272.

Google Scholar

[55] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage 52 (2010) 1059-1069.

DOI: 10.1016/j.neuroimage.2009.10.003

Google Scholar

[56] B. Kosko, Fuzzy cognitive maps, Int. J. Man-Mach. Stud. 24 (1986) 62-75.

Google Scholar

[57] B. Kosko, Hidden patterns in combined and adaptive knowledge networks, Int. J. Approx. Reason. 2 (1988) 377-393.

Google Scholar

[58] D.J. Solove, Understanding Privacy, Harvard University Press, 2008.

Google Scholar

[59] P. Ohm, Broken promises of privacy: Responding to the surprising failure of anonymization, UCLA L. Rev. 57 (2009) 1701.

Google Scholar

[60] N. Manson, The medium and the message: tissue samples, genetic information and data protection, (2009).

Google Scholar

[61] P. Voigt, A. Von dem Bussche, The EU General Data Protection Regulation (GDPR): A Practical Guide, 1st ed., Springer Int. Publ., Cham, 2017.

DOI: 10.1007/978-3-031-62328-8

Google Scholar