[1]
R.E. Costello, A. Anand, M.J. Evans, W.G. Dixon, Associations between engagement with an online health community and changes in patient activation and health care utilization: longitudinal web-based survey, J. Med. Internet Res. 21 (2019) e13477.
DOI: 10.2196/13477
Google Scholar
[2]
World Health Organization, Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed 10/10, 2023).
Google Scholar
[3]
M.L. Litchman, L.S. Edelman, G.W. Donaldson, Effect of diabetes online community engagement on health indicators: cross-sectional study, JMIR Diabetes 3 (2018) e8603.
DOI: 10.2196/diabetes.8603
Google Scholar
[4]
J. Guo, S. Shan, Y.A. Khan, What are the impetuses behind e-health applications' self-management services' ongoing adoption by health community participants?, Health Informatics J. 29 (2023) 14604582231152801.
DOI: 10.1177/14604582231152801
Google Scholar
[5]
J. Min, Y. Chen, L. Wang, T. He, S. Tang, Diabetes self-management in online health communities: an information exchange perspective, BMC Med. Inform. Decis. Mak. 21 (2021) 1-12.
DOI: 10.1186/s12911-021-01561-3
Google Scholar
[6]
A. Hughes, N. Heydarian, D. Gerardo, I. Solis, O. Morera, Seeking health information and social support in the diabetes online community, Front. Clin. Diabetes Healthc. 2 (2021) 708405.
DOI: 10.3389/fcdhc.2021.708405
Google Scholar
[7]
A. Kamis, Y. Yao, S. Kim, An empirical validation of the patient-centered e-health framework in patient-focused websites, Commun. Assoc. Inf. Syst. 34 (2014) 25.
DOI: 10.17705/1cais.03425
Google Scholar
[8]
J. Otiono, M. Olaosebikan, O. Shaer, O. Nov, M.P. Ball, Understanding users' information needs and collaborative sensemaking of microbiome data, Proc. ACM Hum.-Comput. Interact. 3 (2019) CSCW, pp.1-21.
DOI: 10.1145/3274470
Google Scholar
[9]
Q.B. Liu, X. Liu, X. Guo, The effects of participating in a physician-driven online health community in managing chronic disease: Evidence from two natural experiments, MIS Q. 44 (2020).
DOI: 10.25300/misq/2020/15102
Google Scholar
[10]
P. Resnick, H.R. Varian, Recommender systems, Commun. ACM 40 (1997) 56-58.
Google Scholar
[11]
A.K. Sahoo, C. Pradhan, R.K. Barik, H. Dubey, DeepReco: deep learning-based health recommender system using collaborative filtering, Computation 7 (2019) 25.
DOI: 10.3390/computation7020025
Google Scholar
[12]
R.J. Mooney, L. Roy, Content-based book recommending using learning for text categorization, in: Proc. Fifth ACM Conf. Digital Libraries, 2000, pp.195-204.
DOI: 10.1145/336597.336662
Google Scholar
[13]
S. Philip, P. Shola, A. Ovye, Application of content-based approach in research paper recommendation system for a digital library, Int. J. Adv. Comput. Sci. Appl. 5 (2014) 10.
DOI: 10.14569/ijacsa.2014.051006
Google Scholar
[14]
T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito, M. Zanker, Linked open data to support content-based recommender systems, in: Proc. 8th Int. Conf. Semantic Syst., 2012, pp.1-8.
DOI: 10.1145/2362499.2362501
Google Scholar
[15]
S. Sahu, R. Kumar, M.S. Pathan, J. Shafi, Y. Kumar, M.F. Ijaz, Movie popularity and target audience prediction using the content-based recommender system, IEEE Access 10 (2022) 42044-42060.
DOI: 10.1109/access.2022.3168161
Google Scholar
[16]
S. Reddy, S. Nalluri, S. Kunisetti, S. Ashok, B. Venkatesh, Content-based movie recommendation system using genre correlation, in: Smart Intell. Comput. Appl., Proc. Second Int. Conf. SCI 2018, Vol. 2, Springer, 2019, pp.391-397.
DOI: 10.1007/978-981-13-1927-3_42
Google Scholar
[17]
C. Young, Community management that works: how to build and sustain a thriving online health community, J. Med. Internet Res. 15 (2013) e119.
DOI: 10.2196/jmir.2501
Google Scholar
[18]
R. Burke, Knowledge-based recommender systems, Encycl. Libr. Inf. Syst. 69 (2000) Suppl. 32, 175-186.
Google Scholar
[19]
X. Li, T. Murata, Customizing knowledge-based recommender system by tracking analysis of user behavior, in: Proc. 2010 IEEE 17th Int. Conf. Ind. Eng. Eng. Manag., IEEE, 2010, pp.65-69.
DOI: 10.1109/icieem.2010.5646618
Google Scholar
[20]
A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, An integrated environment for the development of knowledge-based recommender applications, Int. J. Electron. Commer. 11 (2006) 11-34.
DOI: 10.2753/jec1086-4415110201
Google Scholar
[21]
C.C. Aggarwal, Knowledge-based recommender systems, in: Recommender Systems: The Textbook, Springer, 2016, pp.167-197.
DOI: 10.1007/978-3-319-29659-3_5
Google Scholar
[22]
D. Chen, R. Zhang, K. Liu, L. Hou, Knowledge discovery from posts in online health communities using unified medical language system, Int. J. Environ. Res. Public Health 15 (2018) 1291.
DOI: 10.3390/ijerph15061291
Google Scholar
[23]
X. Wang, K. Zhao, N. Street, Social support and user engagement in online health communities, in: Int. Conf. Smart Health, Springer, 2014, pp.97-110.
Google Scholar
[24]
M. Lee, P. Choi, Y. Woo, A hybrid recommender system combining collaborative filtering with neural network, in: Adaptive Hypermedia and Adaptive Web-Based Systems, Proc. Second Int. Conf. AH 2002, Malaga, Spain, May 29–31, 2002, Springer, 2002, pp.531-534.
DOI: 10.1007/3-540-47952-x_77
Google Scholar
[25]
B. Kosko, Fuzzy cognitive maps, Int. J. Man-Machine Stud. 24 (1986) 65-75.
Google Scholar
[26]
E.I. Papageorgiou, J.L. Salmeron, A review of fuzzy cognitive maps research during the last decade, IEEE Trans. Fuzzy Syst. 21 (2012) 66-79.
DOI: 10.1109/tfuzz.2012.2201727
Google Scholar
[27]
C. Stylios, V.C. Georgopoulos, Develop fuzzy cognitive maps based on recorded data and information, in: 2015 IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), IEEE, 2015, pp.1-6.
DOI: 10.1109/fuzz-ieee.2015.7338090
Google Scholar
[28]
A. Amirkhani, E.I. Papageorgiou, A. Mohseni, M.R. Mosavi, A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications, Comput. Methods Programs Biomed. 142 (2017) 129-145.
DOI: 10.1016/j.cmpb.2017.02.021
Google Scholar
[29]
A.J. Jetter, K. Kok, Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods, Futures 61 (2014) 45-57.
DOI: 10.1016/j.futures.2014.05.002
Google Scholar
[30]
O. Osoba, B. Kosko, Causal modeling with feedback fuzzy cognitive maps, in: Social-Behavioral Modeling for Complex Systems, Springer, 2019, pp.587-615.
DOI: 10.1002/9781119485001.ch25
Google Scholar
[31]
P.P. Groumpos, Fuzzy cognitive maps: basic theories and their applications in medical problems, in: 2011 19th Mediterranean Conf. Control Autom. (MED), IEEE, 2011, pp.1490-1497.
DOI: 10.1109/med.2011.5983203
Google Scholar
[32]
J.P. Carvalho, On the implementation of evolving dynamic cognitive maps, in: Int. Fuzzy Syst. Assoc. World Congr., Springer, 2019, pp.201-213.
Google Scholar
[33]
P. Zdanowicz, D. Petrovic, New mechanisms for reasoning and impacts accumulation for rule-based fuzzy cognitive maps, IEEE Trans. Fuzzy Syst. 26 (2017) 543-555.
DOI: 10.1109/tfuzz.2017.2686363
Google Scholar
[34]
J.L. Salmeron, Fuzzy cognitive maps for artificial emotions forecasting, Appl. Soft Comput. 12 (2012) 3704-3710.
DOI: 10.1016/j.asoc.2012.01.015
Google Scholar
[35]
O. Osoba, B. Kosko, Beyond DAGs: modeling causal feedback with fuzzy cognitive maps, arXiv preprint arXiv:1906.11247 (2019).
Google Scholar
[36]
E. Bolthausen, M.V. Wüthrich, Bernoulli's law of large numbers, ASTIN Bull. J. IAA 43 (2013) 73-79.
DOI: 10.1017/asb.2013.11
Google Scholar
[37]
M. Alemi-Ardakani, A.S. Milani, S. Yannacopoulos, G. Shokouhi, On the effect of subjective, objective and combinative weighting in multiple criteria decision making: a case study on impact optimization of composites, Expert Syst. Appl. 46 (2016) 426-438.
DOI: 10.1016/j.eswa.2015.11.003
Google Scholar
[38]
E. Bourgani, C. Stylios, V. Georgopoulos, G. Manis, A study on fuzzy cognitive map structures for medical decision support systems, in: 8th Conf. Eur. Soc. Fuzzy Log. Technol. (EUSFLAT-13), Atlantis Press, 2013, pp.784-791.
DOI: 10.2991/eusflat.2013.111
Google Scholar
[39]
Y. Li, X. Ma, J. Song, Y. Yang, X. Ju, Exploring the effects of online rating and the activeness of physicians on the number of patients in an online health community, Telemed. E-Health 25 (2019) 1090-1098.
DOI: 10.1089/tmj.2018.0192
Google Scholar
[40]
M.F. Dodurka, E. Yesil, L. Urbas, Causal effect analysis for fuzzy cognitive maps designed with non-singleton fuzzy numbers, Neurocomputing 232 (2017) 122-132.
DOI: 10.1016/j.neucom.2016.09.112
Google Scholar
[41]
J.P. Carvalho, On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences, Fuzzy Sets Syst. 214 (2013) 6-19.
DOI: 10.1016/j.fss.2011.12.009
Google Scholar
[42]
W. Pedrycz, A. Jastrzebska, W. Homenda, Design of fuzzy cognitive maps for modeling time series, IEEE Trans. Fuzzy Syst. 24 (2016) 120-130.
DOI: 10.1109/tfuzz.2015.2428717
Google Scholar
[43]
D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res. 3 (2003) 993-1022.
Google Scholar
[44]
D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401 (1999) 788-791.
DOI: 10.1038/44565
Google Scholar
[45]
S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (1990) 391-407.
DOI: 10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
Google Scholar
[46]
T.L. Griffiths, M. Steyvers, Finding scientific topics, Proc. Natl. Acad. Sci. 101 (2004) 5228-5235.
DOI: 10.1073/pnas.0307752101
Google Scholar
[47]
M.P. Basilio, V. Pereira, G. Brum, Identification of operational demand in law enforcement agencies, Data Technol. Appl. 53 (2019) 333-372.
DOI: 10.1108/dta-12-2018-0109
Google Scholar
[48]
M.S. Islam, M.M. Hasan, X. Wang, H.D. Germack, A systematic review on healthcare analytics: application and theoretical perspective of data mining, in: Healthcare, vol. 6, no. 2, Multidiscip. Digit. Publ. Inst., 2018, p.54.
DOI: 10.3390/healthcare6020054
Google Scholar
[49]
G. Nápoles, E. Papageorgiou, R. Bello, K. Vanhoof, Learning and convergence of fuzzy cognitive maps used in pattern recognition, Neural Process. Lett. 45 (2017) 431-444.
DOI: 10.1007/s11063-016-9534-x
Google Scholar
[50]
J.A. Konstan, J. Riedl, Recommender systems: from algorithms to user experience, User Model. User-Adapt. Interact. 22 (2012) 101-123.
DOI: 10.1007/s11257-011-9112-x
Google Scholar
[51]
R. Burke, Hybrid recommender systems: Survey and experiments, User Model. User-Adapt. Interact. 12 (2002) 331-370.
Google Scholar
[52]
K. Mls, R. Cimler, J. Vaščák, M. Puheim, Interactive evolutionary optimization of fuzzy cognitive maps, Neurocomputing 232 (2017) 58-68.
DOI: 10.1016/j.neucom.2016.10.068
Google Scholar
[53]
S. Syed, M. Spruit, Full-text or abstract? Examining topic coherence scores using latent Dirichlet allocation, in: 2017 IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA), IEEE, 2017, pp.165-174.
DOI: 10.1109/dsaa.2017.61
Google Scholar
[54]
D. Mimno, H. Wallach, E. Talley, M. Leenders, A. McCallum, Optimizing semantic coherence in topic models, in: Proc. 2011 Conf. Empir. Methods Nat. Lang. Process., 2011, pp.262-272.
Google Scholar
[55]
M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage 52 (2010) 1059-1069.
DOI: 10.1016/j.neuroimage.2009.10.003
Google Scholar
[56]
B. Kosko, Fuzzy cognitive maps, Int. J. Man-Mach. Stud. 24 (1986) 62-75.
Google Scholar
[57]
B. Kosko, Hidden patterns in combined and adaptive knowledge networks, Int. J. Approx. Reason. 2 (1988) 377-393.
Google Scholar
[58]
D.J. Solove, Understanding Privacy, Harvard University Press, 2008.
Google Scholar
[59]
P. Ohm, Broken promises of privacy: Responding to the surprising failure of anonymization, UCLA L. Rev. 57 (2009) 1701.
Google Scholar
[60]
N. Manson, The medium and the message: tissue samples, genetic information and data protection, (2009).
Google Scholar
[61]
P. Voigt, A. Von dem Bussche, The EU General Data Protection Regulation (GDPR): A Practical Guide, 1st ed., Springer Int. Publ., Cham, 2017.
DOI: 10.1007/978-3-031-62328-8
Google Scholar